
A-A±63 956 SIMULATION MODEL OF R HIGH-SPEED TOKEN-PASSINS BUS FOR 1/2
RVIONICS APPLICATIONS(U) MIR FORCE INST OF TECH
HEIGHT-PATTERSON RFB OH SCHOOL OF ENGI.. J E SPIETH

UNCLSSIFIED DEC 95 AFIT/GCS/ENG/85D-15 F/G 17/2 NL

EEmhhhEohEEEEI

mhhoomhhhmuo

. *.*. .*.* *.0

. .4.

/ A;A
wh*&W#%..'t // /. 4

6~ ..M

'~%.* R*'*%*

**Ir % -

./77

In

011

~OF~ ,

SIMLATION MODEL OF A HIGH-SPEED TOKEN-PASSING

BUS FOR AVIONICS APPLICATIONS

THESIS

James E. Spleth

0L. AFIT/GCS/ENG/85D-15

1) jrjBn0N STATEMENT A ELECTE
-Approved tot publC felsoAQ ~ FEB 12 1986

*Disbuton U~11mted

DEPART MENT OF THE AIR FORCEB

* AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

W right- Patterson Air Force Bose, Ohio

- - - - -. 4.

AEIT/ GCS /ENG/ 85D-15

SIMULATION MODEL OF A HIGH-SPEED TOKEN-PASSING

BUS FOR AVIONICS APPLICATIONS

THESIS

James E. Spieth D I
AFIT/GCS/ENG/85D-15 U LE T

FEB 120

Approved for public release; distribution unlimited

AFIT/GCS/ENG/85D-15-

SIMULATION MODEL OF A HIGH-SPEED TOKEN-PASSING

BUS FOR AVIONICS APPLICATIONS

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering

James E. Spieth, B.S.E.E.

December 1985

Approved for public release; distribution unlimited

Preface

The purpose of this thesis was to develop a simulation model of a

token-passing bus local area network. The intended application of the

simulated networks is that of the specialized aircraft avionics data bus

network. The simulation model was successfully developed and validated.

Initial testing was completed for one protocol and a comparison test of

two protocols was accomplished. L

This simulation model is one of many models and tools that will be

needed to design and develop a new avionics data bus required for the

next generation of aircraft and their complex avionics.

I would like to thank my advisor, Major Walter D. Seward, and my

thesis committee member, Captain David A. King, for their assistance

during this thesis effort. I would also like to thank my sponsor,

Harold J. Alber for his technical advice and for allowing me to utilize

the Systems Engineering Avionics Facility computer. Finally, I would

like to thank my wife Charlotte, for her patience and support during

this graduate program.

James E. Spieth

Accesston For

NTIS GRA&I
DTIC TAR t

" 17,Pnno'.unced I'-

....................................... =:

".''.""."". -. ". '"............"... -..... .".-".-.. ."..".."..".....-...".. "-."-... "-."-".. "...."............. ...-.....'................. , . "..*. ,.- ... "

Table of Contents

Page

Preface ii

List of Figures. vi

List of Tables. vii

Abstract viii

I. Introduction. 1

Background. 1
Problem 2
Objective 3
Current Knowledge 3
Approach. 5
Overview of Remaining Chapters. 6

*II. Local Area Networks 8

Definition. 8
*Topology. 8

Topology Analysis 9
Chosen Topology.............

Bus Media...................
Media Access Methods.........

Fixed Assignment Method....... 1
Random Assignment Method 12
Demand Assignment Method 12

Media Access Method Analysis 12
Token-Passing Media Access Method. 13

Messages 15
Message Format 15

Token-Passing Protocols. 16
IEEE Token-Passing Protocol. 18
SAE Token-Passing Protocol 19
Avionics Laboratory Token-Passing Protocol 19
SEAFAC Token-Passing Protocol. 19

Summary. 21

III. Simulation Model 22

Discrete Event Simulation. 22
Entities 23
Simulation Language. 23
Selected Language. 24

Simulation Model Program 24

Se u . . . *. .42 4

Simulation 25

Token-Passing Algorithms 27
Token-Holding Time Limit 33
Assumptions. 34

Bus Parameters. 34

Message Arrival Types and Rates. 35
Message Length Distribution Types and Means. 36

Simulation Model Program Design. 36
Module 0.0 36
Module 1.0 36
Module 2.0 47
Module 3.0 47

Implementation 47
Execution. 48

Representation 48
Bus. 48
Messages . 4

Stations 49

Performance Parameters 50
Access Delay 50
Message Delay. 50
Normalized Delay 50
Token-Passing Cycle. 50
Throughput 50

Efficiency 51

Summary. 51

IV. Test Results 52

Validation 52
First Validation Test. 52

Second Validation Test 55
Third Validation Test. 56
Fourth Validation Test 57
Fifth Validation Test. 58

Sixth Validation Test. 59
Validation Tests Summary 62.

Aircraft Test Case 62
First Test Case. 64
Second Test Case 66
Third Test Case. 69
Fourth Test Case 71
Fifth Test Case. 71
Sixth Test Case. 75
Seventh Test Case. 77

Summary. 79

V. Summary and Recommendations........ 8

Summary of Test Results........ 8
Validation Tests 80

iv

;.>Parameter Vaito/efrac Tests
Message Arrival Conditions 81
Bite Rate Variation. 81I.Protocol Comparison. 82

Thesis Summary 83
Recommendations. 84

First Recommendation 84
Second Recommendation. 85
Third Recommendation 85
Fourth Recommendation. 85

Summary. 86

Appendix A: Simulation Model Users Guide. 87

Program Execution 87
Command File. 87 .

Program Execution Statement 88
Bus Data Input Lines. 88
Station Data Input Lines. 92

4Sample Output 94

Appendix B: Simulation Model Program Software. 101

Appendix C: Test Case Command Files. 144

Bibliography. 166L

Vi a16

7.

List of Figures

Figure Page

1. Local Area Network Topologies 10

2. Simple Token-Passing Protocol Simulation. 14 1'

3. Typical Message Format. 15

4. Simple Centralized Token-Passing Protocol Simulation. 20

5. Simulation Model Program Flow Chart 25

6. Setup Section Flow Chart. 26

7. Summary Section Flow Chart. 27

8. Distributed Token-Passing Algorithm 28

9. Centralized Token-Passing Algorithm 30

10. Simulation Model Program Structure Charts 37

11. Simple Bus Configuration. 531

12. Large Bus Configuration 59

13. Fifth Validation Test Results 60

14. Fighter-Type Aircraft Bus Configuration 63

15. First Test Case Results 67

16. Second Test Case Results. 68

17. Token-Passing Sequences 69

18. Third Test Case Results 70

19. Fourth Test Case Results. 72

20. Fifth Test Case Results 74

21. Sixth Test Case Results 76

22. Seventh Test Case Results 78

vi

A'- 1,

~ ~ List of Tables

.. Table Page

I. Comparison of Token-Passing Protocols 17

II. First Validation Test Results. 55

III. Second Validation Test Results. 56

IV. Third Validation Test Results. 57

V. Fourth Validation Test Results. 58

VI. Sixth Validation Test Results. 61

VII. Aircraft Test Case Station Data 65

VIII. Fourth Test Case Mean Message Delays. 73

vii

Abstract

There are many factors of bus token-passing protocols that

influence the overall performance of the protocol. Extensive analysis

is needed to design a protocol with performance that can meet the

requirements for a next-generation aviation electronics (avionics) data

bus. The purpose of this thesis was to develop and test a token-passing

bus simulation model that could be used to conduct this analysis.

This thesis developed and validated a model for simulating bus

token-passing protocols for avionics applications. Two algorithms were

designed that reflected the timing and operation of a distributed

control token-passing protocol and a centralized control token-passing

protocol. The algorithms were incorporated into an overall simulation

model program which included simulation control, data collection, and

data analysis functions. The simulation model program was written in

the Pascal computer programming language. .

The simulation model program allows various avionics bus

configurations to be defined and tested. A series of tests were -'" I ..

conducted using the simulation model program to validate its operation

and modeling capabilities. The validation tests were successful.

Initial performance tests were conducted for a centralized control

token-passing protocol using a bus configuration representative of a

fighter-type aircraft bus network. The performance of the two types of

protocols was also compared.

viii

.~h_.

SIMULATION MODEL OF A HIGH-SPEED TOKEN-PASSING

BUS FOR AVIONICS APPLICATIONS

I. Introduction

There is presently a great deal of interest concerning the rapidly

evolving field of local area computer communication networks, commonly

called local area networks (Myers, 1982:28; Stallings, 1984a:3). The

main reason for this interest in local area networks (LANs) stems from

the ability of the local area network to interconnect computer-based

equipment so that expensive resources can be shared and data can be

exchanged among the equipment (Stallings, 1984a:3). Local area networks

are used in aviation electronics (avionics) applications primarily to

reduce integration complexity and risk (Alber and Thomas, 1985:130).

This introductory chapter begins with a background of avionics local

area networks and reasons why a new avionics local area network is

needed. Next, a brief description of the problem is given followed by a

statement 0 .he objective of this thesis. A summary of the current

knowledge concerning bus local area networks is then presented followed

by the approach taken in this thesis. The chapter concludes with an

overview of the rest of the chapters and appendices of this thesis.

Background

In the late 1960s, it became apparent that avionics integration by

use of dedicated hard-wired interfaces was too costly and complex, and

led to inflexible avionics systems (Gifford, 1974:85). Therefore, the

1> ::-

L - concept of a standard interface which would allow different avionic

equipment to exchange information via a shared serial communications

link was developed (Boeing, 1980:2-2). Such a standard interface was

defined and adopted by the Air Force as MIL-STD-1553. This standard

defines the hardware and protocol for a serial digital data bus that is

shared by the avionics connected to it. A time division multiplexing

scheme is used to allow the avionic equipment to share the bus in a

controlled manner. This Air Force standard was later adopted by the

Department of Defense for use by all the military services.

As the next generation of military aircraft is starting to be

designed, a new standard interface implemented by an avionics local area

network is required. This new avionics network is needed to meet the

increased information flow requirements of the more advanced and complex

digital avionics that will be used in these aircraft (Ludvigson and

Milton, 1985:122). Also, a broader range of avionic equipment could

take advantage of reductions in weight, integration complexity and cost

that avionics local area networks offer if their information flow

requirements could be met by such a network.

Problem

The US Air Force's Aeronautical Systems Division engineering

community has agreed on the framework for a new avionics local area

network. The use of a token-passing protocol with a bus topology is the

preferred method (Ludvigson and Milton, 1985:123). However, there are

many factors of the token-passing protocol which could influence the

performance of the avionics network, specifically the data throughput

2

rate and message delays. These factors include bit rate, number of data

words per message, maximum message size, number of overhead bits, size

of the token, maximum token-passing time, centralized versus distributed

token scheduling and control, physical length of the bus, and the

maximum number of terminals connected to the bus. Extensive analysis is

needed to determine what effect these different factors have on the data

throughput rate and message delays.

Objective

The objective of this thesis is to design and test a software

simulation model that will allow analysis of the effect the factors

listed above have on the bus's throughput rates and message delays.

This model will aid in the development of a finalized configuration for

the new avionics local area network. The software model will allow

simulation of the bus network on a digital computer.

Current Knowledge

Due to the popularity and interest in local area networks, there

has been a great amount of work reported in the literature concerning

local area networks. Studies of the token-passing bus protocol found

I pertinent for this thesis include the following.

Stallings discusses the factors that determine performance for
local area networks including token-passing bus protocols and
develops simple performance equations (Stallings, 1984b).

Ulug compares the performance of a token-passing bus protocol
with different token-holding limit strategies using analytical
and simulation methods (Ulug, 1984).

Cherukuri et al evaluate the performance of a token-passing
protocol for ring, baseband bus, and broadband bus topologies
using analytical methods (Cherukuri et al, 1982).

3

"-' .-, " -" ', -',', a - .
o

.,. ,, .. , -. -~ . . ' , ,. . -: ,,.'x . - ,, K'

- - V T -

p."

Stuck presents a performance comparison of the popular media
access methods including the token-passing bus protocol using
analytical methods (Stuck, 1983a).

Rahimi and Jelatis validate the IEEE 802.4 token-passing
protocol and evaluate its performance by using simulation
methods (Rahimi and Jelatis, 1983).

Based upon the results of these analytical and simulation studies,

some ideas concerning the performance of token-passing buses are

generally accepted. These ideas include the following:

Low throughput when the bus is lightly loaded because much of
the bandwidth is wasted passing the token through idle
stations (Rahimi and Jelatis, 1983:801; Cherukuri et al,
1982:59).

High and stable throughput when the bus is heavily loaded
because the overhead is small compared to the amount of data
being transferred (Cherukuri et al, 1982:59).

Decrease in throughput when either the header bits in the
message and/or the token are increased in size because both
are considered overhead. When they are increased, more time
is being spent carrying the overhead bits and not data
(Stallings, 1984b:30).

Performance is sensitive to the message and token propagation
delays and hence the length of the bus (Stuck, 1983a:75-76).

While there has been a great deal of work involving analytical and

simulation studies of local area networks, most works are not completely

applicable to the very specialized avionics application. Avionics local

area networks are different from other typical local area networks for L
an office or distributed computing environment in two main areas. The

first difference is that an avionics network has known minimum and

maximum station populations (Alber, 1985). The other difference is that

more is known about the message size and arrival characteristics for the

avionics network compared to the other environments.

4

-~ .• a -

* .. , There are also disadvantages involved with the analytical method

itself. The major drawback is the simplifying assumptions that must be

made in order for the analysis to be workable. These assumptions limit

the analysis' value for detailed performance evaluations (Rahimi and

Jelatis, 1983:801).

The problem with simulation studies is the applicability of the

model. The simulation might work correctly, but if the model is not an

accurate representation of the system under study, the usefulness of the

simulation is doubtful. For example, Stuck noted that simulation

studies for bus local area networks did not model the separation of the

stations on the bus (Stuck, 1983b:112). He found that the simulations

assumed worst case propagation delays for signals traveling between

stations. Since then, a bus local area network simulation has

incorporated actual separation delays; but the study was conducted for

the carrier sense, multiple access with collision detection media access

method as implemented by Ethernet (Jackman and Medeiros, 1984:595).

Approach

The approach taken in this thesis in developing a simulation model

of an avionics bus local area network was to develop an algorithm that

reflected the timing and protocol operation of a token-passing bus

network. An overall design was done for the simulation model which

incorporated the algorithm and necessary simulation control, data

collecting, and data analysis functions to produce a complete simulation

software package. The package was written in the Pascal programming

language. The simulation model allows various avionics bus

configurations to be set up and tested so the effect of the different

5

S" ? S

bus design factors can be analyzed. The design factors that are

adjustable are listed below in general categories:

bus environment
bit rate *.

number of stations Ar
length of bus
signal propagation speed

stations
separation
token-passing order
message arrival types and rates
message length distribution types and means

messages
number of overhead bits
number of bits in token
number of bits in a data word
minimum and maximum number of data words

protocol
centralized or distributed control
token holding time
station delay time '

Besides setting up the bus environment to be tested, the simulation

control function allows control of the length of the simulation run.

The data collecting function of the simulation model program

collects data so that the following performance parameters can be

determined by the data analysis function:

data throughput rates
message delays
access delays
message size statistics
bus efficiency

Overview of Remaining Chapters

Chapter II presents a brief overview and analysis of local area

network topology, media access methods for bus topologies, and potential

protocols for the new avionics bus network. Chapter III discusses the

6
F '"",' '

simulation model. Chapter IV describes how the simulation model was

validated and presents results from simulation runs. Chapter V is the

summary of this thesis and presents some recommendations. Appendix A is

the simulation model users guide and Appendix B contains the simulation

model software. Appendix C contains the data files used for simulation

runs.

7,..

-V. - t a-at -. o.

II. Local Area Networks

This chapter presents a discussion of local area networks including

topologies and bus media access methods. After each topic, an analysis

is conducted that describes the strong and weak points of each topology

and access method presented. Four popular token-passing protocols are

then discussed and analyzed. Based upon these analyses, a topology,

media access method, and protocol are selected for use in this thesis. j7

Definition

A local area network can be defined as "a communications network

that provides interconnection of a variety of data communicating devices

within a small area" (Stallings, 1984a:4).

Avionics systems consist of various equipment that depend on each

other for basic information concerning the aircraft and its environment

(Boeing, 1980:2-2). The avionics need to exchange this information with

one another in order for each to perform their function. An example of

this information exchange would be a central air data computer providing

pressure altitude and air speed data to an inertial navigation unit

(Boeing, 1982:6-5). Also, the avionics system is limited to the

physical size of the aircraft. Thus, an avionics bus system which

allows information transfer agrees with the above definition and is one

example of many systems that can be described as a local area network.

Topology

There are three main topologies that can be used to describe a

local area network: the star, ring and tree topologies (Stallings,

8

.

'I.'

1984a:6). These topologies are shown in Figure 1 where the square boxes

represent nodes or stations. The star topology has a central node

connected to all the other nodes in the network. The ring has each node

connected to exactly two other nodes using point to point connections

which form a physical ring. The tree topology has a trunk with multiple

branches. The nodes can be located anywhere along the trunk and

branches. The special case of a tree with only a trunk is called a bus

topology (Stallings, 1984a:6). .

Topology Analysis

The star topology leads to the central node becoming the bottleneck

* of the network since all messages are routed to or through it. The ring

. topology requires each node to actively repeat each message to the next

node on the ring. Also, if one node fails, the ring is broken unless

active bypass circuits are available. A break in the media can cause a

single point failure of the bus topology. This failure mode can be

avoided if multiple buses are used.

Chosen Topology. The bus was selected as the preferred topology

for the new avionics local area network for the following reasons: (1)

previous bus experience with MIL-STD-1553, (2) nodes can be connected to

the bus with passive connections, (3) adding or deleting nodes is easily

accomplished, and (4) multiple buses can be used for reliability. One

reason for not choosing the star topology was the congestion problem at

the central node. Another reason was the central node is a single point

of failure which would cause the entire network to fail. The ring

topology was not chosen because there is a chance that a single failure V

. '-,""" could break the ring. Active bypass circuitry can be used to pass the

* 9
-,e no,

* * -. ~N §x. ;;-... ~ ~.*?:- :.2... .

Star

I I I 1

Ring

Tree

Bus

Figure 1. Local Area Network Topologies

10

signals around the break, but the bypass circuitry adds another failure

mode.

Bus Media

The media used for the actual physical bus can be a radio channel,

a coaxial cable, a fiber optic cable, or a twisted-shielded pair of

wires. This thesis will not address the choice of media in keeping with

the current trend to design media independent protocols.
L.

Media Access Methods

Since all the nodes in the bus topology share a common

communications link (the bus), the network requires a scheme for

controlling the nodes' access of the bus. This is necessary because

only one message can be succe.sfully transmitted and received on the bus

at a time (Kurose et al, 1984:44). This control is called the media,

medium, channel or multiple access method and is one of the most

important aspects of the bus topology. Also, due to the shared bus, all

nodes can hear all messages transmitted. This characteristic is called

broadcast (Stallings, 1984a:6). The media access methods can be grouped

into three major categories: fixed, random or contention, and demand

assignment methods (Liu et al, 1982:417).

Fixed Assignment Method. In the fixed assignment access method,

all nodes on the bus are given a certain amount of time or frequency to

transmit messages even if they have none to send. Examples of fixed

assignment methods are time division multiplexing and frequency division

multiplexing.

%-

4 -

.•.. & 4 . . .'V ' .' . -s W . V

Random Assignment Method. Random access methods try to improve on

S "the inefficiency of the fixed methods by only allowing nodes with

messages to randomly try and transmit them. However, there is no
,..-'..

- coordination between nodes; so two or more nodes can transmit at the

same time, causing their messages to collide and become useless. When a

collision occurs, the whole process is repeated until all the messages . .

are successfully transmitted (Kurose et al, 1984:46). There are various

versions of the random access methods which try and minimize this loss

of capacity due to collisions. Two familiar examples of random access

methods are the various Aloha type methods, and the carrier sense,

multiple access with collision detection (CSMA/CD) method as implemented

by Ethernet (Tanenbaum, 1981:253,292).

Demand Assignment Method. The demand access methods either

explicitly or implicitly exchange control information so at any time

only one node is in control of the bus and allowed to transmit a

message. This method avoids the problems associated with collisions

(Kurose et al, 1984:45). Also, although each node is given the chance

to transmit, they do not have to (IEEE 802.4, 1982:1-10). This way, the

media bandwidth is not wasted by assigning it to idle nodes (Liu et al,

1982:419). Examples of demand access methods are the various token-

passing and reservation schemes.

Media Access Method Analysis

The token-passing method is preferred for the new avionics bus

local area network rather than other methods due to its attractive

features for the aircraft avionics real-time environment application

.... (Ludvigson and Milton, 1985:123). The fixed assignment access methods

12

-. ,.,_ .-_* ---- - . .-- .*. -.-- .L.-*- -... . -.-. -.. •. .. -

are not efficient for changing traffic loads. The message collision

characteristic of the random access method is inefficient; and depending

on the message transmission retry policy, can lead to non-deterministic

bus access delays. This is especially true under heavy traffic loads.

The attractive features of the token-passing access method include

deterministic access delays; no minimum packet length requirement; good

performance under heavy traffic loads; fairness to all nodes; no

specialized listening while talking or collision detection circuitry;

allowing implementation of multiple classes of service (priority); and

easy addition or deletion of nodes (Stallings, 1984a:28; Miller and

Thompson, 1982:84; IEEE 802.4, 1982:1-2).

Token-Passing Media Access Method

3 The token-passing method operates by having the nodes pass a

special bit pattern message (the token) among themselves. The node

having the token has control of the bus and can transmit any messages it

might have until it has no more messages or the maximum token-holding

time has expired (Miller and Thompson, 1982:80). The token is then

passed to the next node. Every node is guaranteed a maximum time that

it must wait between token possessions, which is called the maximum

access delay time. This access delay time varies with the amount of

load (nodes with messages) on the bus. A feature of this method is that

it places minimal restrictions on how a node uses its bus time. This

allows a node to use some other access method during its bus control

time such as poll/response or requesting an acknowledgement, as long as

it does not confuse the other nodes (IEEE 802.4, 1982:1-10).

13

I W. .m

yes

g-.

no

transmit data
message(s)

transmit token
message

token messagepropagation time .7-

Figure 2. Simple Token-Passing Protocol Simulation

The normal steady-state operation of the token-passing protocol can

* be thought of as alternating data transfer and token transfer phases

-- (Stallings, 1984b:26). Figure 2 is a simplified flow chart

representation of how this steady-state operation is simulated in this

thesis. The Figure starts with a station having just received the

token.

14

Thromlsed-tt prto ftetknpslgpooo a -.

bethugt f s ltrntig at tasfr ndtoentrnserphse.14.

(Stlligs,198b:2). igue 2is sipliiedflo chrt . "

rersnapno o hssed-tt prto ssmltdi hs.-.-

.. *-*. . -.
'a *

* - :-.:

['. r. 'p'

Preamble Start Control SA DA Data CRC End

Figure 3. Typical Message Format

Messages. In addition to carrying actual data from one station to

another, a message in the token-passing media access method also carries

information that is necessary for the correct operation of the token-

passing method (Ludvigson and Milton, 1985:127). This information, such

as synchronization, address, and error control information, is not

actual data that is being transferred from one station to another and

therefore is considered overhead.

Message Format. The format of a typical message is shown in Figure

3. The preamble or synchronization bits allow a receiving station to

synchronize itself with the bus signal (Ludvigson and Milton, 1985:127).

The start delimiter bits labeled Start in Figure 3 and the end delimiter

bits labeled End in Figure 3 are used to define the beginning and end of

each message (Alber and Thomas, 1985:132). The control bits are used to

define the message type. There are basically two types of messages, the

control message and the data message. The control messages are

necessary for the operation of the token-passing media access method.

Data messages carry data among the stations. Examples of control type

messages would be the token message, where a station is passing the

token; messages that allow new stations to join and exit the network;

..r. and messages that initialize the network (IEEE 802.4, 1982:4-3). Other

15
** .' *: .'.* - . . . ,--*** .. m

information can also be included with the control bits; priority bits to

indicate the priority of the message, and time tag bits to indicate when

the data in the message was generated. SA indicates the source address

bits and DA indicates the destination address bits in Figure 3. These

bits are used to indicate the source and destination of the particular

message. The data bits labeled Data in Figure 3 denote the data being

transferred among stations or data associated with a control message.

The data bits can be an optional field for the control type messages.

For example, the control message that passes the token would not have

any data bits in it. The cyclic redundancy code bits labeled CRC in

Figure 3 are used for error control. This allows stations to detect

errors in the messages they receive.

Token-Passing Protocols

There are currently three token-passing protocols that have been

proposed for the new avionics bus network. This section will compare

and analyze their features. A fourth protocol defined by the Institute

of Electrical and Electronics Engineers (IEEE) in their effort to

standardize local area networks will also be included in the analysis.

The other three protocols have been proposed by the Society of

Automotive Engineers (SAE) as part of their aerospace standards

activities, by the Collins Government Avionics Division of Rockwell

Corporation as part of a contract for the US Air Force's Avionics

Laboratory Pave Pillar Program, and finally by the US Air Force's

Systems Engineering Avionics Facility (SEAFAC). A summary of the N.

important features of each protocol is presented in Table I. A dash (-)

in a column for an item indicates that this item is undefined or not

16

tF -

'. ..

** $Vr 4 r4% 0, 4 10 U4 W

41~~ -4 -

*00

0 w0 'Vr4 j

40 4-I I
> .0cc14 4-4

0

0%

D.* -T -4

0 O000 03

4-4r IJ 0 -4-U .
z " ,00 00 s.C 00 @3 .-4
00 0 4 0 --% D 04 1%..

00 "4r -I 0 - r

0na

1-4 41 '0 - -4 en-n-r

csJ 00J 3 '4'

W- "4 C'".4@ '- 4) 0% 9'40
goU .. iL $- v4 .-4q

00-H 0 W *-4'0 00 u
COW W -A

m% 0 0 .

M 0 0jWC 00t 00 "q '0

W 0 .0. w .W ca P. .
00- 4) m.'% @30 @3 0 (A

4) 0r- 0 .44 .-
_0 0. WW-4 CC 0A 1H M (t 1 ?

NNJ1' w 4) 9. a*) o. -v

.-4 r. W 0 u1.4 0 m 440
0) 0 0 @3W 1. V % 0 4)
a Ui OCOWL a1I W 0 0osw r s c

W=- r C@N UW ' 04 W -0 H
0004 4) 00v. 4.(00 -H44 - , 0 0 W r-0

W1 WOO 1O 0 x0 W 0 P-4

-H 0 00 .V000 -H t3 0v I w0ccc w

17

-. '. . -.- .- ---

applicable for that particular protocol.

The response time item in Table I refers to the maximum amount of

time a station is allowed to take in responding to a token message

addressed to it. That is, a station must begin transmitting a data or

token message within the response time maximum limit. If no response is

heard by the station that passed the token (sending station) or the

central controller, depending on the type of control used in the

network, an error condition is assumed to exist. The sending station or

central controller then takes steps to overcome this error condition.

Station servicing refers to the two different disciplines available to a

station for servicing the messages it has waiting to be transmitted.

The first discipline is called exhaustive servicing where all messages

pending at a station are transmitted. The other discipline is called

limited servicing which only allows a station to transmit pending

messages until a time limit or number of messages limit is reached

(Cherukuri et al, 1982:60). The next four paragraphs briefly discuss

the information presented in Table I for each protocol.

IEEE Token-Passing Protocol. (IEEE 804.2, 1982) The draft IEEE

Token-Passing Bus Access Method, Standard 802.4, is one of the family of

standards for local area networks. The 802.4 protocol includes options

for a 1 megabit per second (Mb/s) baseband network, a 5 or 10 Mb/s

baseband network, and a 1 Mb/s or 5 Mb/s or 10 Mb/s broadband network.

For the analysis, the 10 Mb/s baseband network was used. Referring to

Table I, a maximum bus length is not directly specified in the standard

because different types of cable are allowed by the standard. Instead,

a minimum signal strength in dB is defined. The minimum message size

18

" ._ - *-. .'. . _*__ _ . .. _.. .'. a _ ' . . * . _ ". _ _% . .•

item in Table I contains two values because the IEEE draft Standard I
allows a 16 bit or a 48 bit address field. However, the maximum size of

the message is limited to 65,568 bits in both cases. Only the 16 bit

address field is used in the calculation of the maximum address and

maximum group address item entries.

SAE Token-Passing Protocol. (SAE, 1985) In the draft of the

proposed standard, seven bits are allowed for destination and source

addresses, but a total of eight bits are allowed in the address fields.

The last bit is to be used for multi-cast or group addresses, but the

draft standard does not define how it is to be implemented.

Avionics Laboratory Token-Passing Protocol. (Ludvigson and Milton,

1985) The contract to develop this protocol is presently in progress so

many details of the protocol have not yet been defined. This is the

reason why so many items are marked with a dash in Table I. The

Avionics Laboratory and Rockwell Collins are allowing a token control

option in the protocol. The option allows a second token control .

method, that of a centralized type.

SEAPAC Token-Passing Protocol. (Alber and Thomas, 1985) This

protocol uses a centralized method to control the operation of the bus.

One station, designated the scheduler station, is responsible for bus

initiation, error detection and recovery, and setting the token passing

order. This protocol has a characteristic that allows the token to be

passed along with the data in one message. If a station does not have

data to send, a regular token message is transmitted. Including the

token in the data message decreases the bus overhead, as a separate

token message does not have to be transmitted. This protocol also

19

* " ...

JIi

no yes

transmit token transmit token &
message data message(s)

token message token/data message
propagation time propagation time

next station
#, response time

Figure 4. Simple Centralized Token-Passing Protocol Simulation

allows more than one data message to be sent by having the transmitting

station pass the token back to itself until it has no more data or the

token holding time is exceeded. The token is passed to the next station

with the last data message transmitted. Figure 4 is a simplified flow

chart representation of how this centralized protocol's steady-state

operation is simulated in this thesis. The Figure starts with a station

having just received the token.

. - .

,. ,

Summary

Local area networks can be described by their topology and the

method used to control how the stations gain access to the network.

Each topology and access method has its strong and weak points which

must be analyzed according to the network's application.

Since a bus topology with a token-passing access method is the

preferred method for a new avionics local area network, this thesis will

develop a simulation model for such a network. The simulation model

will be designed with enough flexibility to model all the previously

described protocols.

L.

21

WS

.~..*.. *

III. Simulation Model

This chapter begins with a brief discussion of discrete event

simulation concepts. The simulation program and the token-passing

algorithm are described and defined using flow charts. The various

adjustable bus parameters are described next. Finally, the simulation

program design is presented using structure charts.

Discrete Event Simulation I
Simulation can be defined as experimentation with a model of a

system (Shannon, 1983:20). What makes simulation so popular and

powerful is its ability to allow a nondisruptive examination of an

existing system to learn more about it or to test improvements.

Simulation also can be used to explore the performance of a system that

does not yet exist (Mittra, 1984:142) or which can not be readily

analyzed.

There are many ways simulation models can be classified. Three

examples of these classifications are according to how the model

represents the system, the model's purpose, and how the model represents

change within the system (Schmidt, 1984:65). When a simulation model

represents change within the system as occurring only at isolated points

in time, the model is classified as a discrete type. When the model

represents change as continually occurring over time, the model is

classified as a continuous type (Schmidt, 1984:65-66). For discrete

models, the points in time are determined by the occurrence of an event.

An event is when something happens to change the state of the system

(Shannon, 1975:109). The time clock in discrete simulations is advanced

22
.

in varying size steps of time to when the next event occurs. These

steps are discrete amounts of time, hence the name discrete simulation.

In simulating an avionics bus network in this thesis, the discrete

event type of simulation is used because the operation of the bus can be

characterized by various events. Examples of these events are the

arrival of a message at a station, the times a station begins and ends

transmission of a message, and the times a station begins and ends

transmission of a token message.

Entities. Entities in a system are the physical or symbolic

components of the system (Schruben, 1983:101). Entities are important .. "

in a simulation model because their interactions cause events to be

created (Shannon, 1975:109). For the avionics bus network, the entities

of the system would be the bus media, the stations, and the messages.

Entities are described by their attributes (Schruben, 1983:102). For

example, the attributes of a message might be its size, its point of

origin (source station), and its destination station (Fortier and Leary,

1981:221).

Simulation Language. (Schmidt, 1984:72-73) The simulation model

must eventually be converted to a form understandable by the computer.

This conversion is carried out by expressing the simulation model in a

general purpose computer programming language or a special purpose

(simulation) language. There are* two main advantages in using a general

purpose language. These languages provide the person conducting the

simulation a maximum amount of flexibility in the design of the model.

Secondly, at least one of these languages is probably known by that

person. An advantage of using a simulation programming language is its

3..

' -*.

built-in routines to accomplish common simulation functions. Two

S "examples of these routines would be event manipulation subroutines and

time keeping mechanisms.

Selected Language. The Pascal general purpose programming language

was selected for use in this thesis for a number of reasons. The most

important reason was that the flexibility of a general purpose language

was needed to model the level of detail desired for the avionics bus

simulation model. Even with the recent growth and popularity of _"

simulation languages, Mittra reports that a recent survey estimated that

75% of all discrete event simulations were performed using FORTRAN or

Pascal languages while most of the remaining 25% were performed using

the GPSS and SIMSCRIPT simulation languages (Mittra, 1984:144).

Simulation Model Program

The simulation model program is divided into three main sections .

that are described below and shown in flow chart form in Figure 5. The

three sections are setup, simulation, and summary.

Setup. The Setup section performs all the data input and

initialization actions that are necessary before the actual simulation

can take place. These actions accomplished by the Setup section of the -

simulation program are shown in flow chart form in Figure 6. The Setup

section begins by reading in the bus configuration data. Next, the

arrival time and length of the first message for each station is

calculated and the message is queued at its station. Then, the

variables that will store the data for all the statistics concerning the

simulation are initialized. Finally, the token-passing propagation

delays are calculated for every station pair and this information is

".-

24

7ii .-7 7.,.7.,.7-X:_

- startpeop

setup a.

simulation

summary

end

Figure 5. Simulation Model Program Flow Chart

stored. This is done so that during the simulation portion of the

program, the token-passing propagation delays can simply be looked up

and do not have to be calculated every time they are needed.

Simulation. This section of the simulation program performs the

actual simulation of the bus. The section consists of two main

routines, one for simulating distributed token-passing protocols similar

to the one defined by the IEEE 802.4 specification, and the other for

simulating the Systems Engineering Avionics Facility centralized token-

passing protocol. This section of the simulation model program is

described in detail later in this chapter under the heading Token-

I - Passing Algorithms.

25

2

I start setup

read data

calculate first message
arrival and length
for every station

initialize

statistics
variables

calculate
token-passing

propagation delays

end setup

Figure 6. Setup Section Flow Chart

Summary. The actions accomplished by the Summary section of the

simulation model program are shown in flow chart form in Figure 7. This

section performs the calculations necessary to determine the values for

the various performance parameters for the bus configuration that was

simulated. These parameters include: throughput, message statistics,

access delays, message delays, number of token-passing cycles, and

efficiency. This section then prints these parameter values in a

summary format.

26

H- .

start summary

calculate and print
access statistics

calculate and print
message statistics

I t

calculate and print
delay statistics

calculate and print
throughput,

efficiency, and
token cycle
statistics

Figure 7. Summary Section Flow Chart

Token-Passing Algorithms

The token-passing algorithms are the main part of the simulation

section of the overall program. The distributed token-passing algorithm

is shown in Figure 8 and the centralized token-passing algorithm is

shown in Figure 9. In the figures, the abbreviation "incr. sim."

represents increase simulation. This refers to increasing the time clock

of the simulation to the time of the next event. The abbreviation "msg"

represents message and the abbreviation "tx" represents transmission.

27

. -.. -.

-. - -~ S. ~ .~.

start simulation

--- 03

arrivals?

in. sim e

bymemsg txcetime

time & length of
next message

2)

Figure 8. Distributed Token-Passing Algorithm

28

* . *- - - - - - -- - - ~ -- -- ~*~ *. 7

2

incr. sim. time
by token tx time

ic.sm. time
by token prop. time

incr. sim. time
by station

response time

move to next
station

endu smuion

Figure 8. Distributed Token-Passing Algorithm (continued)

29

.

IV 17 IL W.7K~w L7-k:I~ h-Lq_. ai.,Y.

startsimuatio

3~.

yes
Figue 9.CenraliedoenasnAgoih

30 ivls

......................................o......... .

aria time of yes~*

4 no.

incr. sim. time
by msg tx time

calculate arrival
time & length of

next message

Figure 9. Centralized Token-Passing Algorithm (continued)

31

incr. sim. time

.
"

by token tx time
- .q

incr. sim. time

by token prop. time

incr. sim. time

by station

response time

move to0 next
station

yes""

end simulation

Figure 9. Centralized Token-Passing Algorithm (continued)

32

. ~ - .. ll

-. % • e

For both algorithms, the first decision that is made is whether the

station has any messages waiting to be sent. The presence of messages

waiting to be sent must be checked because a station may have a very low

or even a zero rate for message arrivals. A variety of arrival rates

are allowed so different traffic loading situations may be simulated. A

message arrival rate of zero would correspond to a station with no

messages to send. The expression "continuous arrivals" refers to the

condition where a station always has messages waiting to be transmitted.

Again, the reason for this condition is so different traffic loading

situations can be simulated.

Token-Holding Time Limit. The token-holding time limit can be

checked by a station either before a message is transmitted or after a

message has been transmitted. In a token-passing protocol with a

maximum message size, both types of token-hold time limit checks would

result in calculable actual station token-holding times and therefore

deterministic access delays. However, a before transmission check keeps

the actual maximum station token-holding time lower than an after

transmission check. The only way to achieve this same lower maximum

token-holding time with the after transmission check would be to

artificially restrict the token-holding time limit. This restriction

does not allow the station to fully utilize its token-holding time limit

except when it has the maximum number of maximum size messages ready to

transmit. It is for this reason that both algorithms use a before

transmission check of the token-holding time limit.

In the case of the centralized token-passing protocol, this before.-.

transmission check requires a station to not only check the next message

33

• :..-.in its message queue, but also to check the second message if there is ,.,

one. This is because the token must be passed in the last message .

transmitted by the station. Thus, if the token-holding time will run I'

out during transmission of the second message, the station only -

1 transmits the next message and includes the token passing instruction in

" ~it. However, since no actual messages are being send in the simulation ,-

• ~model program, the centralized algorithm does not have to check the"""

second message. It still performs a before transmission check of the

token-holding time limit though. If the limit will be exceeded, we,,.i.

assume the token was passed in the last message transmitted. 'i

Assumptions. Both algorithms assume that initialization of the bus

has taken place; that is, a complete token-passing order has been,'

established and each station knows to whom it is to pass the token. The" .'

'% ~. -' -=

. i. centralized t ken-passing algorithm assumes that the token-holding time

limit allows a station to transmit at least one data message when it has :.

one or more ready to send, because that is the only means by which the "'

token can be passed given that condition. The algorithms have been

designed to model their respective token-passing protocol under the "

conditions of steady-state, error free operation. These assumptions are

made so that the simulation program can focus on modeling the protocols

to determine their performance and the effect the various bus parameters

Bus Parameters

The various bus parameters that are adjustabl n the a simulation

program are listed below. Also included arT it e techoices available when

la parameter has a lcmited number of values it may take on, for example

34

secod mesag. Itstil pefors a efoe trnsmssio chck o"th

toke-hodingtim liit toug. Ifthelimt wil b excede, w

-'- "- - assume-'the token .'was passed in the last" message transmitted. %1., .. •" ... " ",.

73* NXTLA R!-

the type of message arrival condition a station can have.

- bus environment
bit rate
number of stations
length of the bus
station delay time
signal propagation speed

- protocol
centralized or distributed control
token holding time limit
token passing order

ascending
descendingfie .

fixed

- stations

distance from left end of the bus
type of message arrival condition

FI deterministic distribution
Poisson distribution
continuous case '-".1

message arrival rate
type of message length distribution

deterministic
exponential

message length size or mean

- messages
number of overhead bits
number of bits in token
number of bits in a data word
minimum number of data words in a message
maximum number of data words in a message

Message Arrival Types and Rates. All the stations on the bus may

have the same type of message arrival condition. All the stations may

have the same arrival rate of this condition or they may all have

different rates of this condition. However, if the stations all have

different types of message arrival conditions, all their rates are

assumed to be different and are read in on a individual basis even

though they might be the same.

35

o

...°•...*.- -°,.,,°. °.. .. °..... ,o.-

.........---..
'

-'
°

- .
"

7Z -F 7 .-

Message Length Distribution Types and Means. All the stations on

the bus may have the same type of message length distribution. All the

stations may have the same mean for this distribution type or they may

all have different means. However, if the stations all have different

types of distributions, all their means are assumed to be different and

are read in on a individual basis even though they might be the same.

Simulation Model Program Design

The structure chart method was used as an aid in the design of the

simulation model program. The structure charts are shown in Figure 10.

A goal of modularity was strived for in the design of the software so

changes or added functions could easily be incorporated. The following

paragraphs describe each main module of the program.

Module 0.0. This is the executive module for the program. It is

decomposed into three modules that implement the functions of the three

sections described earlier.

Module 1.0. This module implements the functions of the setup

section. It accomplishes this by calling five other modules. The bus

data configuration input is divided into two modules. The first module,

busdata-input, reads in all general bus configuration data. The second

module, stationdatainput, reads in the specific data about each

station. An example of the modularity of the program is shown in the

Node 1.0 structure chart of Figure 10. The calculate arrival and length

(calc arr and len) module performs the basic calculations to generate a -.-

new message and assign it an arrival time and length. This module can

be called by any other module for any station when a new message is

needed.

36

I

........---. *-. .

* ... •...

- 777 -IT Ir IGL- . .. - r r vzxr-w

Go IL

020

.

37J1-

-W~

Wu 1

F-4 0

44J

Cu to

00

0~00

41)

0 I C~ .1-
0. * I..co

-4 1.CA

4-4 Cu8

-4-

00

C.39

-4

-r4

0c 0 0

*0 cc4

.cIn. 4^4

-~ JH

40)

14

0 1 0
-44

00

000

or

* 41

V4 I4

0 44 17

-41

100

r. CN

0 00

41 A2

1- -4.. .U- .

cn.

* I k _ _ca

C4

co0

rC.)

%00 Q)
ica ca

10 0

0. .

43

c'a

C14U

-4 W4

U

- 00

44-

eU

0 0

-4o

- 4-H

45

en.

00

4-i1

4-1 00

CL 44

46-

P' D
Z

'- -- - . - %,' "J W
T

. -..- r.rr rr.n' r' - .- . -.- - - .ii I --- -- . -,. - - -- ', -_ "- . i = -u -: -. '-- .- . -_ -_ -. ---- - o

Module 2.0. This module implements the functions of the simulation

section. It is decomposed into two modules, one for distributed, and

one for centralized token-passing protocols. During a particular ,.

execution of the simulation model program, only one of these two

protocols can be simulated. Each protocol module can call on six other

modules to update data statistics variables, generate a new message

arrival, or remove a message that has been transmitted, as it performs

the simulation. This is shown in the Node 2.X structure chart of Figure

10. Not all of the six modules might be called for a particular

station. For example, if the station had continuous type message

arrivals, message delays would not apply to the station. Therefore, the

message delay statistics would not be calculated or updated and thus the

update message delay statistics module (updatedelay_stats) would not be

called.

Module 3.0. This module implements the functions of the summary

section of the program. Module 3.0, statistics, performs the

calculations and printing of access delays and message statistics for

each station as well as a summary. It calls upon the two other modules

to calculate and print message delays (Module 3.2), and token cycles,

throughput, and efficiency (Module 3.1).

Implementation

The simulation model program was designed to be run on the Li
sponsor's Digital Equipment Corporation VAX 11/782 computer running the

VAX/VMS Version 4.2 operating system. The simulation model was coded in

the Pascal language. Only standardized Pascal language constructs were -

used so that the program could be transported to other computer systems

47

b.

with a minimum of changes and or problems. However, a Digital supplied

uniformly distributed random number generator run time library function

was used to generate random numbers for the message arrival and length

distribution calculations.

The program was designed to be executed in a batch mode. This was

done to avoid lengthy delays for the user when long simulations were

being run. A users manual for the simulation model program is contained

in Appendix A. Also included is an example of the program's output.

The simulation model program software is contained in Appendix B.

Execution. A user submits the simulation model program for

execution in the batch mode by invoking a command file. This command

file contains the program execution instruction and also includes the

data needed by the program to set up the bus configuration to be tested.

The command file is created by the user, separately from the program,

using a text editor. Thus, the user has the option of selecting an

existing bus configuration by using an existing command file, or

defining a new configuration by creating and using a new command file.

Representation

The three main parts of a bus local area network that are

represented by the simulation model program are the bus, messages and

stations.

Bus. The bus is simply represented as an entity that transmits

bits at a certain rate with no errors. The propagation delay of signals

as they move along the bus is moieled. The speed of light is multiplied

by an adjustable propagation factor to determine a signal propagation

48

.

2% % *%~.9.A .. ~ ~ .4 ~ i25 ~.~ --- -. f

• " *,. rate and associated time delay.

Messages. Messages are represented as entities that move through

the bus local area network. The message attributes include its source

station's address, size, and arrival time. The messages are implemented

as Pascal records with the message attributes as fields within that

record. The form of the message record is shown below.

" messagetype record
source add integer
length : real;
arr time real

end

Stations. The bus stations are represented as entities that are

part of the local area network. The station attributes include:

station address
passing address
message arrival type
message arrival rate

~ 0 distance from start of bus
message length distribution type
message length distribution mean
token passing propagation time to next station
time of last bus access
message queue

The stations are implemented as Pascal records with the station

attributes as fields within that record. The form of the station record

is shown below. The station's message queue is represented using a

single linked list.

station-type = record -

address : integer
passaddress : integer
mess arr type : arrival
mess arr rate : real
distance : real
messlentype : length_distrib ;
mess len mean : real
passprop time : real

49

.

."..- . .

last access real;
front_mess_queue message_ptr ;
rearmess_queue message_ptr

end

Performance Parameters

The following paragraphs describe how the various performance

parameters are calculated by the simulation model program.

Access Delay. Access delay is calculated when a station has just

received the token. It is the difference between the current time and

the time when it last received the token.

Message Delay. Message delays are calculated if a station's

message arrival distribution is poisson or constant with a non-zero

arrival rate. The delay for a particular message is calculated just

after it has been transmitted. The delay includes the time the message

has been waiting to be transmitted (queueing time), and the time its

takes to be transmitted (Bux, 1981:158).

Normalized Delay. The normalized delay is the mean message delay

for all messages divided by the mean message length transmission time

(Bux, 1981:169).

Token-PassLng Cycle. A token passing cycle is the amount of time

it takes for the token to be passed through all the stations on the bus.

Throughput. Throughput is the number of data bits transmitted

during one token-passing cycle (Rahimi and Jelatis, 1983:800). It is

calculated at the end of every token-passing cycle. These throughputs

are then averaged and a mean throughput is printed as part of the

summary statistics.

50

.7

. %' ...

. -. ~Efficiency. Efficiency is the number of data bits transmitted,

divided by the total number of bits (data and overhead) transmitted

during one token-passing cycle (Ludvlgson and Milton, 1985:127).

Efficiency is calculated at the end of every token passing cycle and a
2,*

mean efficiency is printed at the end of the program as part of the

summary statistics.

Summary

Simulation allows experiments to be conducted on real and non-

existing systems to help answer performance and operation questions. A

discrete event simulation is being used in this thesis to explore the

performance of an avionics token-passing bus. An overall simulation

model program incorporating token-passing simulation algorithms,

simulation control, and performance calculations was designed and

implemented in the Pascal language.

51

. ." - .

...-....... ' 2 .i

IV. Test Results

This chapter presents the results of testing accomplished to

validate the simulation model program. The results of tests using a

fighter-type aircraft bus configuration with the centralized token-

passing protocol are also presented to illustrate how the different bus

design factors affect this protocol's performance. Finally, a

comparison test of the distributed and centralized protocols using the

fighter-type bus configuration is presented.

Validation

Validation of the simulation model program was accomplished through

a number of different tests. These tests were designed to selectively

test a certain aspect of the program.

First Validation Test. The first validation test was designed to

test the continuous type of message arrival condition using the

distributed token-passing algorithm. This was carried out using a

simple bus configuration which is shown in Figure 11. This first

validation test is based on a distributed token-passing protocol

validation and evaluation done by Rahimi and Jelatis for the IEEE 802.4

Protocol (Rahimi and Jelatis, 1983:800-801). There are six stations

spaced evenly on a 500 meter long bus. All six stations have messages

to send and they always have messages available. The message size is

fixed at two different lengths, 864 data bits or 16224 data bits. There

are 160 bits of overhead in a message and the token is also 160 bits in

length. The token is passed in ascending station address order, .-r

starting with station one. A bit rate of 10 Mb/s and a station delay

52

..

m7 I7 .7 T-T -V I-- I-

0 100 200 300 400 500

Length of Bus (meters)

Figure 11. Simple Bus Configuration

time of 0.8 microseconds are used.

The condition of a station always having messages available to send

is modeled by a continuous message arrival condition. The token-holding

time was adjusted so the stations could only send 1, 2, 4, 8, or 16 of

the shorter messages and I or 2 of the longer messages.

In order to validate their simulation model, Rahimi and Jelatis

constructed simple test cases for which they could develop relatively

simple formulas for the token-passing cycle time or token walk time, and

throughput (Rahimi and Jelatis, 1983:800). The formulas were then used

to produce analytic values for throughput which were compared to the

values produced by their simulation model. They first defined the

token-passing overhead time per station:

P = 0+ S+D (1)

where

0 = time to transmit the token message 16 microseconds

S = station delay time 0.8 microseconds

D - mean token-passing propagation delay time = 0.6667 microseconds

53

''

.... - a.. .-. Z a . . . , . , ,'. .*

&

The formula for the token walk time is then

W- (N)(P) + (M)(K)(F) (2)
R

where

N number of stations on the network 6

M number of stations with data to transmit

K - maximum number of messages a station can transmit

F = total message length including data and overhead in bits I -

R = bit rate 1 10 megabits/second

The formula for throughput is

T = (M) (K) (L) (3) .- ?
Tw

where

L = number of data bits in a message

The results of this validation test using the simulation model

program along with Rahimi and Jelatis' analytic and simulation results

are shown in Table II. Each row of Table II represents one run of the

simulation model program. Comparing the results, it is seen that this

thesis simulation model program's results are in closer agreement with

Rahimi and Jelatis' analytic results than their own simulation results.

The probable reason for this is their more detailed simulation model.

Also, they give no description of how throughput was calculated in their

simulation model. Based upon the close simularity between the

simulation model program's results and Rahimi and Jelatis' results, this

first validation test was successful.

%'2. 2"

5452

,.. :

II

Table II

First Validation Test Results

'" Throughput (Mb/s)

Number of Message
messages size Rahimi/Jelatis Simulation

sent (bits) Model
analytic simulation Program

1 1024 7.20 7.10 7.21

2 1024 7.77 7.70 7.77

4 1024 8.09 7.89 8.09

8 1024 8.26 8.18 8.26

16 1024 8.35 8.26 8.35

1 16384 9.80 9.63 9.80

2 16384 9.80 9.80 9.85

Second Validation Test. The second validation test was designed to

test a case in which the message load is not evenly distributed among

the stations. This test utilized both the deterministic distribution

and continuous case message arrival conditions. The test was carried

out using the same bus configuration as the first validation test.

However, in this test, only one of the six stations has messages to send

and it always has messages available. This second validation test is

again based on a distributed token-passing protocol validation and

evaluation done by Rahimi and Jelatis for the IEEE 802.4 Protocol

(Rahimi and Jelatis, 1983:800-801). Equations (1), (2), and (3)

presented in the first validation test paragraph also apply to this

validation test.

55

-.".- -

Table III

Second Validation Test Results

Throughput (Mb/s)
Number of Message _-__ _-_ _

messages size Rahimi/Jelatis Simulation
sent (bits) Model

analytic simulation Program

1 1024 4.17 4.05 4.17

2 1024 5.58 5.45 5.58

4 1024 6.71 6.59 6.72

8 1024 7.48 7.34 7.48

16 1024 7.93 7.85 7.93

32 1024 8.18 8.07 8.18

1 16384 9.30 9.13 9.31

2 16384 9.60 9.13 9.60

The station that always has messages available to send is modeled

" by a continuous message arrival condition. The other stations with no

messages are modeled by a deterministic distribution message arrival

condition with an arrival rate of zero. The token-holding time is

adjusted so that a station may send 1, 2, 4, 8, 16, or 32 of the shorter L_
messages and 1 or 2 of the longer messages. The results for the test

using the simulation model program along with Rahimi and Jelatis'

analytic and simulation results are shown in Table III. Due to the

close agreement between the simulation model program's results and

Rahimi and Jelatis' results, this second validation test was successful.

Third Validation Test. The third validation test is similar to the

first except it is conducted using the centralized token-passing

56

.

Table IV

Third Validation Test Results

Throughput (Mb/s) Efficiency
Number Message .__ _

of size
messages (bits) analy. sim. analy. sim.

sent 7.

1 1024 8.32 8.32 .8438 .8438

4 1024 8.41 8.41 .8438 .8438

protocol. The test was designed to check the continuous message arrival

condition and uses the bus configuration shown in Figure 11. All the

other bus parameters are the same. However, only a data message length

of 864 bits and just two different token-holding time limits are used.

The two token-holding time limits allow the stations to send one or four

messages. The results of this validation test using the simulation

model are shown with the analytical results in Table IV. This

validation test was successful based upon the consistent results between

the analytical calculations and the simulation program's values.

Fourth Validation Test. The fourth validation test is similar to

the second except it is conducted using the centralized token-passing

protocol. The test was designed to check the deterministic distribution

message arrival condition with an arrival rate of zero and uses the bus

configuration shown in Figure 11. All the other bus parameters are the

same. However, only one data message length of 864 bits and just two

different token-holding time limits are used. The two token-holding

time limits allow the stations to send one or four messages. The "

results of this validation test using the simulation model are shown

57

V -. - -? ' . I :.-q I , Y
:

- - - . • .. ' - J . .- .- .- -- .- _T _ ._ _ _- - -

Table V

Fourth Validation Test Results

brsThroughput (Mb/s) Efficiency
"-Number Message

of size
messages (bits) analy. sim. analy. sim.

sent

1 1024 4.52 4.52 .4737 .4737

4 1024 6.93 6.93 .7059 .7059

along with the analytical results in Table V. Comparing the results

indicates total agreement between the analytical calculations and the

simulation program's results. This validation test was successful.

Fifth Validation Test. The fifth validation test was designed to

test the Poisson distribution message arrival condition using the

distributed token-passing algorithm. This validation test is based on

evaluations of token-passing methods conducted by Cherukuri, Li, and

Louis (Cherukuri et al, 1982:68). The bus configuration used for this

test is shown in Figure 12. There are 50 stations spaced evenly along a

2000 meter bus. The message arrival rate is the same for all the

stations. The message size is fixed at a constant length of 1000 data

bits. There are 96 bits of overhead in a message and the token message

is 96 bits long also. The token is passed in ascending station order

starting with station number one. A bit rate of 10 Mb/s and a station

delay time of 2 microseconds are used for the test. The token-holding

time limit was fixed at 120 microseconds, which allowed the stations to

transmit one message per access.

58

,° - "--

1 23 49 50

0.0 40.8 81.6 1959.2 2000.0

Length of Bus (meters)

Figure 12. Large Bus Configuration

Messages arrive at the stations according to a Poisson

distribution. All stations have an identical mean arrival rate. This

mean arrival rate was varied between 30 and 300 messages/second and a

number of runs were made using the simulation model program. The

results of these runs are compared to Cherukuri's results in Figure 13.

The figure shows the normalized delay (mean message delay relative to

the mean message transmission time) plotted against the throughput rate

relative to the bit rate. Based upon the good agreement between the

simulation program's results and Cherukuri's results, this validation

test was successful. L
Sixth Validation Test. The sixth validation test was designed to

test the exponential distribution of message lengths. This validation

test is based on a distributed token-passing analysis and simulation

study conducted by Ulug (Ulug, 1984). Ulug found that when stations

were limited to transmitting only one message per token-holding turn,

there was little variation in the mean token-passing cycle time when

using fixed message lengths or exponentially distributed message lengths

with the same mean (Ulug, 1984:39).

59
. -.. ..

50

40

30

6-~

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .0

Throughput
Bit Rate

Figure 13. Fifth Validation Test Results

60

Table VI

Sixth Validation Test Results

mean token-
total passing standard
token- message cycle time deviation

passing length (milliseconds)
time distri-
(micro bution Simulation Simulation
seconds) type Ulug Model Ulug Model

Program Program

75.0 fixed 6.411 6.412 0.782 0.000802 iT
125.0 fixed 10.575 10.152 0.854 0.000901

175.0 fixed 14.795 13.694 0.871 0.000798

75.0 exp. 6.252 6.308 1.219 0.001052

125.0 exp. 10.668 10.062 1.339 0.001201

175.0 exp. 14.707 13.493 1.467 0.001151
-J.

The bus configuration used for this validation test consisted of
fifty stations spaced evenly on the bus. Ulug does not indicate the

length of the bus but rather specifies a total token-passing time which

includes token transmission time, token propagation time, and the

station delay time. Three different values are used for this total

token-passing time; 75 microseconds, 125 microseconds, and 175 micro-

seconds. A message is 864 bits in length. The message overhead is 160 .

bits and the token is also 160 bits in length. A 5 megabit/second bit

rate is used.

The results of this test using the simulation model program and

Ulug's results are shown in Table VI. The difference between the

61

.-- i < '- -. :..2'. .. '- ''. ".-''---''.. '. .' . . '. "',-..-'-- -..- '-..-'. -.....- .- ...- ,.-. .- '.-"-. .-.. ..-. ,..-...--.. .,.. ." ..- "-'.",'

simulation model program's mean token-passing cycle times and Ulug's

times exists because he did not state at what message arrival rate

(load) his tests were run. Also, a decimal point error must have been

made in his calculation of the standard deviations. However, when
L.4

comparing the values in Table VI, a general consistency for the mean

token-passing cycle times and standard deviations between Ulug's results

and the simulation model program's results can be seen. This validation "4e'.

test was considered successful. r
Validation Tests Summary All the validation tests were

successful. Since no other simulation or analytical results exist for

the cases of Poisson type arrivals and exponentially distributed message

*" lengths using the centralized token-passing protocol, a comparison check

between the distributed and centralized software was done. These

checks, along with the knowledge that the same support procedures

(calc arrand len for example) are called by both protocol algorithms,

added to the confidence that the centralized protocol algorithm was also

working correctly. These validation tests and checks show that the

simulation program successfully models a bus local area network using a

distributed or centralized token-passing protocol. .

Aircraft Test Case

Initial performance tests of the centralized token-passing bus

protocol while varying some of the bus design factors were conducted

using the simulation model program. The bus configuration tested was

representative of an avionics local area network for a fighter-type

aircraft. The aircraft size information is based on the dimensions of

the F-15 aircraft and the basic bus configuration was suggested by Alber

62

.-............... 4* *~.**

.° . . .

Right Wing

• ..

Cockpit Tail

Bus -> 13 meters

Left Wing

20 meters

Figure 14. Fighter-Type Aircraft Bus Configuration

(Alber, 1985). The bus was 60 meters in length and had 30 stations

connected to it. The stations were positioned on the bus corresponding

to where avionics would normally be located. These locations included

the cockpit area, an equipment bay aft of the cockpit, both wing areas

and the tail section. The stations were divided evenly among these five

areas, six stations to an area. The bus configuration is shown in

Figure 14. The bus starts at the cockpit (distance 0.0 meters), goes to

the left wing, then to the right wing and ends at the tail (distance

60.0 meters). The bus length is greater than the physical dimensions of

the aircraft because the actual routing distances through the aircraft

for the bus cable are taken into account.

Details of the bus configuration are as follows. There are 70 bits

of overhead in a message and the token message is 22 bits in length. A

data word consists of 16 bits. There can be a minimum of zero data .

words and a maximum of 256 data words in a message. A bit rate of 50

megabits/second is used and the station delay time is 0.5 microseconds.

63

-_"-"_'_" .. ._ ." -._'.._' .. "._" X:- "-. ".." .- .. "-,.. "..".."..."..-.-...."-......-..".......-.............."-....."...."....................... "

The stations are allowed to hold the token for a maximum of 83.32

microseconds, which is the time it would take to transmit a message with

the maximum number of data words in it (256). The token-passing cycle

starts with station number one and the token is passed in ascending

order based upon the station's address. The Poisson distribution type

of message arrival condition is used and messages have exponentially

distributed lengths. In order to keep the message size within the

minimum and maximum limits, the initial length generated is checked by

the simulation program to make sure it is greater than or equal to the

minimum length and less than or equal to the maximum length. If the

message length is outside these limits, its value is changed to

whichever limit it exceeded.

First Test Case. The first test case for this fighter-type

aircraft bus configuration was a comparison of equal and unequal station

message arrival rates. For unequal message arrival rates, the stations

were divided into three classes: low, medium, and high. These classes

had a message arrival rate ratio of 1/5/50. This condition of unequal

message arrival rates was used to simulate the different data output or

data update rates that avionics have or require. For example, mission

or fire control computers produce and/or require high rates of data

messages per second in order to accomplish their functions with the

level of accuracy needed for modern military aircraft. The stations'

addresses, location on the bus, distance from the left end of the bus,

and message arrival class are shown in Table VII.

For the equal message arrival rate simulation, all the stations had

the same mean message arrival rate. This mean message arrival rate was

64

**.'

Table VII

Aircraft Test Case Station Data

Station Location Distance Message Arrival
(meters) Class

Ad.

1 Cockpit 2.0 Low
2 Cockpit 2.5 Medium
3 Cockpit 3.0 High
4 Cockpit 3.5 High
5 Cockpit 4.0 Medium
6 Cockpit 4.5 Low
7 Equip. Bay 5.0 Low
8 Equip. Bay 6.0 Medium
9 Equip. Bay 7.0 High
10 Equip. Bay 8.0 High
11 Equip. Bay 9.0 Medium
12 Equip. Bay 10.0 Low
13 Left Wing 13.0 Low
14 Left Wing 14.0 Medium
15 Left Wing 15.0 High
16 Left Wing 16.0 High
17 Left Wing 17.0 Medium
18 Left Wing 18.0 Low
19 Right Wing 28.0 Low
20 Right Wing 29.0 Medium
21 Right Wing 30.0 High
22 Right Wing 31.0 High
23 Right Wing 32.0 Medium
24 Right Wing 33.0 Low
25 Tail 55.0 Low
26 Tail 56.0 Medium
27 Tail 57.0 High
28 Tail 58.0 High
29 Tail 59.0 Medium
30 Tail 60.0 Low

varied from 300 messages per second to 3500 messages per second. For

the unequal message arrival rate simulation, all stations in a class had

the same mean message arrival rate. However, the mean rates were

different among the three classes. The mean message arrival rates were

varied from 10 to 2000 messages per second for the Low class, 50 to

10,000 for the Medium class, and 500 to 100,000 for the High class. r

65

., *.-.-....

V ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ i. 7PW. . ; :.-p F dTL L.-tIU

Both message arrival rate simulations used exponentially distributed

messages lengths with a mean of 64 data words. The results of these

simulations are shown in Figure 15 as normalized delay-throughput

curves.

From the results, it can be seen that the unequal arrival rate case

has smaller delays for medium load (throughput/bit rate) values. At low

load values, both the equal and unequal arrival rate conditions delays

are very similar; while at very high load values, the unequal rate

condition has higher delays. This difference in delay values indicates

the assumption of equal mean message arrival rates for stations can lead

to pessimistic delay values.

The command files used to provide the bus configuration data to the

simulation model program for this test case and the other following test

cases are contained in Appendix C. r
Second Test Case. The second test case for the fighter-type

aircraft bus configuration was a comparison of different mean message

lengths. Simulations were done with mean message lengths of 32 data

words, 64 data words and 128 data words. All three simulations used the

unequal station message arrival rate condition from the first test case

with the same mean arrival rates. The results of this second test case

are shown in Figure 16 as normalized delay-throughput curves.

From the test case results, it can be seen that a larger mean

message size results in higher throughputs for the same amount of delay. L

This improvement in performance can be explained by comparing two

networks with different mean message lengths. The network with a larger

mean message size will be transmitting a larger number of data bits for

66

7 -L-- L

25

unequalBi arvlrate

Figure ~ ~ ~ ~ l 15iirtTetCaeReut

2067

I~~ T-

.....

.-..... ..- -*A%~ ~r
.

pr

9 EEU __

I LL.L

66

5*

1-2-3-4-5-6-7-8-9-10-11-12-13-14-28-29-30-1

optimum token-passing sequence

1-30-2-29-3-28-4-27-5-26-6-25-7-14-17-15-16-1

worst-case token-passing sequence

Figure 17. Token-Passing Sequences

the same number of bus accesses. Rahimi and Jelatis also noted higher

throughput and efficiency values for longer message lengths (Rahimi and

Jelatis, 1983:801).

Third Test Case. The third test case for this fighter-type

aircraft bus configuration was a comparison of optimum and worst-case

*i token-passing sequences. An optimum token-passing sequence, where the

token is passed to adjacent stations, was compared to a worst-case

sequence. In the worst-case sequence, the token is passed to the

farthest unvisited station (Cherukuri et al, 1982:59). These sequences

are shown in Figure 17. For these simulations, an exponential message L
length distribution with a mean of 64 data words was used. The unequal

station message arrival rate condition was used with the same mean

arrival rates as in the previous test cases. The results of these

simulations are shown in Figure 18 as normalized delay-throughput

curves.

From the test case results, it can be seen that there is not a

significant performance difference between the two token-passing

sequences. It is known that propagation delays due to station

separation and bus length effect the performance of bus networks (Stuck,

69

-)-." -.-.',. •-.".. -.'., --..-,.-.-,.......-.. *-.- ..'-*....-...., ..' .' - .- ..- .- ..* -. ,,.- . ..,' -

25- worst-case token-passing
sequence

20 ~ioptimum token-passing
sequence0

10- rLIi -_

9 -P- --- -

N4-

1 I I J

, 1 .2 .3 . . 5 .6 .7 .8 .

Throughput
Bit Rate

Figure 18. Third Test Case Results

70

1983a:75-76). However, in the case of the avionics bus configuration

simulated in this test case, the token-passing sequence does not effect

the performance of the bus because of the small distances involved and V_

the high bit rate. Since most avionics buses will be short in length,

the performance degradation due to propagation delays will not be a

significant factor.

Fourth Test Case. The fourth test case using the fighter-type

aircraft bus configuration was a comparison of different bit rates.

Simulations were performed with bit rates of 25 megabits/second, 40

megabits/second and 50 megabits/second. All three simulations used the

unequal station message arrival rate condition from the first test case

with the same mean arrival rates. The results of this test are shown in

Figure 19 as normalized delay-throughput curves.

The test case results indicate no large differences in the

normalized delay-throughput/bit rate ratio curves for the three

different bit rates. However, when the non-normalized mean message

delays shown in Table VIII are compared, the delays at 25 Mbits/second L
are approximately twice as long as the delays at 50 Mbits/second and the

delays at a bit rate of 40 Mbits/second are approximately a third longer -

than at 50 Mbits/second.

Fifth Test Case. The fifth test case using the centralized control

protocol in a fighter-type aircraft bus configuration involved varying

the maximum message size. Operation of the centralized control protocol

was simulated with a maximum message size of 256 data words, 1024 data

words, and 4096 data words. A maximum message length of 256 data words

-. was chosen for one of the test cases because this is the size limit used

71

.% .

- - I. r wr w w W W r7'r- r -r- -!0,-. P- P!11

25-

bit rate of 25 Mbitslsecond 0
I r

20 I bit rate of 40 Mbits/second a~

10 -

9i ratef of5-btsscn

I f

10 I InI I ,
0 2 ... 4....7.8 .9 1

77

.. -

..', , - :' i : : o ,. - V - - . - - - . - . .. ' -,r~ r
-

,. ;.

Table VIII

Fourth Test Case Mean Message Delays L

Mean Message Delay
mean arrival (milliseconds)

rate __
(messages/second) 25 Mbits/sec 40 Mbits/sec 50 Mbits/sec

186.6 0.080 0.049 0.040

373.3 0.103 0.057 0.045

560.0 0.132 0.066 0.051

746.6 0.167 0.076 0.056

1120.0 0.249 0.104 0.074

1866.0 0.393 0.177 0.117

2240.0 0.428 0.200 0.135

3733.3 0.565 0.286 0.203

18666.0 0.967 0.540 0.408

37333.3 1.114 0.644 0.497

in the Systems Engineering Avionics Facility centralized protocol. A

maximum message length of 4096 data words was chosen for this test

because this is the size limit used in both the SAE and Avionics

Laboratory distributed protocols. A mean message length of 64 data

words was used for this test case. This test used the unequal station

message arrival rate condition from the first test case with the same

mean arrival rates. The results of this test are shown in Figure 20 as

normalized delay-throughput curves.

From the test case results, it can be seen that the normalized

delay-throughput curves are very similar for the different maximum

message lengths. Also, there are no major differences in the mean

73

• :'--'.:- --. .-.- . . . _ i . . :. :. ..- : :.- . ..-. ".-.....-*S-"-* :. -"-

25- data words

2data words

1-I LI
10 - I III

47

9 o- -.

W-W. -.- T 77 7572- 7-

i" '.message delays. Two conditions are likely to have contributed to this *

lack of variation in performance parameters for this test case. The

first is that the same value for the mean message length (64 data words)

was used for all three maximum message length simulations. The second

condition is that the same message arrival rates were also used for all

three simulations. The simulations with the smaller maximum message

lengths (256 and 1024 data words) actually should have had slightly

higher message arrival rates. This would be necessary because multiple

messages would be required using those protocols to transfer the same

amount of data as could be transferred with one message of 4096 data

words using the third protocol.

Sixth Test Case. The sixth test case examined the effect of a

different type of message arrival distribution on the centralized

protocol in the fighter-type aircraft bus configuration. A

deterministic distribution message arrival condition was compared to a

Poisson distribution condition. The unequal station message arrival

condition from the first test case with the same mean arrival rates was

used in this test. The deterministic distribution used the same mean

message arrival rates used for the Poisson distribution. The results of

this test are shown in Figure 21 as normalized delay-throughput curves.

Having messages arrive according to a Poisson distribution is the

normally assumed condition in queueing systems analyses, as this type of

arrival condition successfully models the random arrival of messages in

real systems (Tanenbaum, 1981:58). In current MIL-STD-1553 avionics bus

systems, information is usually updated at a bus station at a t

deterministic rate. This is done because the bus controller follows a

75

""

25- Deterministic arrival rates0

I L i

9-

8-

1- I a

Bi Rate i I

0r
Fiur 21.: SitzetCs eut

76 f 1

o defined timing cycle in requesting and providing data to the stations

due to the constraints of its hardware and software components (Boeing,

1980:5-3). However, with a token-passing protocol for a new avionics

network, this practice could still be used but would no longer be

necessary. From the test case results shown in Figure 21, it can be

seen that no significant differences exist between the deterministic and

Poisson arrival distribution delay-throughput curves.

Seventh Test Case. The seventh test case compares the distributed

control and the centralized control protocols using the fighter-type bus

configuration. The centralized control protocol used for this test is

the same one used for all the previous tests. It is based on the

protocol proposed by the Systems Engineering Avionics Facility. The

- distributed control protocol tested is based upon the IEEE 802.4

protocol. Although the IEEE protocol has a maximum bit rate of 10

megabits/second, a bit rate of 50 megabits/second is used in the

distributed control protocol for this test in order to obtain a more

realistic comparison. A 50 megabits/second bit rate might be obtained

with the IEEE protocol if fiber optics were used as the media. The

results of this comparison test are shown in Figure 22 as normalized

delay-throughput curves.

The results show that the distributed control protocol's normalized

delay-throughput/bit rate ratio curve is shifted up and to the left of

the centralized protocol's curve. This means that for the same _

throughput value, the distributed protocol has a higher message delay

"*. time than the centralized protocol. From the other aspect, for the same .-

delay value, the distributed protocol has a lower throughput rate than

..7

...77..*,.* *. ... *..*

II
00

LL

77

I. L

-..4...-

.%% the centralized protocol. This poorer performance of the distributed '* .

protocol results from its separate token message and larger number of

overhead bits in a data message as compared to the centralized protocol.

However, as discussed in the next chapter, the distributed protocol may

still be preferred in practice for other reasons in spite of its poorer

delay-throughput performance.

Summary

The simulation model program developed by this thesis was validated

through a series of tests. These tests allowed the operation and

performance of the simulation model program to be compared to published

or analytical operation and performance results. Initial tests were

conducted using the centralized token-passing protocol in a fighter-type

aircraft avionics bus configuration to determine the different bus

design factors' influence on the protocol's performance. A comparison

test between the distributed control and centralized control protocols

was also conducted.

79

..-.

. 4 ---

-- >' ~.~. - ~ 5 L.L L ~ -. ~ ~ A2S A " .. .

V. Summary and Recommendations

This chapter summarizes the testing conducted in Chapter IV and -

includes a discussion of how the testing results relate to an avionics ..7

network environment. A summary of this thesis is then presented along

with recommendations for future studies.

Summary of Test Results

The validation and initial performance/parameter variation tests

from Chapter IV are summarized and discussed in the following

paragraphs.

Validation Tests. Validation of the simulation model was conducted

in stages with each stage adding a protocol characteristic to the model.

As each characteristic was added, the complexity of the model increased.

%JP The bus and protocol parameters for many of the tests, especially for

the distributed control protocol, were designed to duplicate testing

conducted by other investigators and reported in the literature. Thus,

the simulation model program's results could be and were compared to

published results. In the case of the centralized control protocol

where no previous work existed, the test results were compared to

analytical results for the simple test cases. The only check that could

be accomplished for the more complicated test cases, was a software

cross-check of the centralized control protocol algorithm with the

distributed control protocol algorithm. The successful outcome of all

the validation tests indicates the ability of the simulation program to

model a token-passing protocol bus network.

80

o°°.. . .. * . * .** *

- -. A A j~...I .~.. a" •AL.

Parameter Variation/Performance Tests. The parameter" "

variation/performance tests were conducted to determine the effect of

the different bus and protocol parameters on the performance of the

centralized control protocol. A comparison test between the centralized

and distributed protocols was also conducted.

Message Arrival Conditions. The various avionic equipment on

a network all have different information transfer requirements based

upon their function. These information transfer requirements can be

translated into messages sizes and transmission rates which are usually .

different for each station. This results in a condition of numerous ""-

unequal station message arrival rates. This message arrival condition

could be modeled by the simulation model program since it allows all

stations to have different message arrival rates.

Bit Rate Variation. When the bit rate was varied in the

Fourth Test Case, no large differences were noted in the normalized "

delay-throughput curves for the three rates. However, when the non-

normalized mean message delays were compared, there were differences.

The non-normalized mean message delays at 25 megabits/second were more

than twice as long as the delays at 50 megabits/second. This comparison

raises the question of whether throughput or message delay is the most

important performance parameter in an avionics network. In most cases,

message delay is considered the most important parameter because of the

real-time nature of an avionics network. A station, as part of the

aircraft's avionics system, requires information to perform its

function. Since the aircraft and the environment around it are changing

at a rapid rate, information can become "old" and thus worthless very

81

' ~i°" -

', .. o

quickly because the information represents an condition of the aircraft

or its environment that no longer exists. Thus, limits on mean and

worst case message delays are required to make sure the information is

- received by a station before the information becomes old and useless.

For some avionics, small message delays are not as critical due to

the function the avionics are performing or the type of information

being processed. In this case, message delays are not as important and

network tradeoffs can be made. For example, a lower bit rate could be

used reducing the complexity and the cost of the bus and station

hardware components.

Although the 25 megabits/second bit rate is exactly half of the 50

megabit/second bit rate, the delays for the 25 megabit/second bit rate

were more than twice the 50 megabit/second delays. The reason for this

difference is a slightly different total number of messages

transmitted/total number of station accesses ratio and a slightly

different actual mean message length for each bit rate simulation.

Protocol Comparison. In the Seventh Test Case, the

centralized control protocol had a better normalized delay-throughput

curve than the distributed control protocol. However, from an overall

avionics network system viewpoint, additional factors besides delay-

throughput performance must be considered. While the distributed

protocol does have more overhead bits in a message, these bits allow

more bus operation options. These options include more addresses which

allow additional stations on the bus, and more subaddresses for groups

of stations. Also with the distributed control protocol, control of

the network is shared equally by all stations. This avoids problems of "

82

?i..... .,.. .,.-......... •......*-. .* -V.. -' ,' aX -. "... '

single points of failure that the centralized control protocol has with

its one scheduler station, or one scheduler station and one backup

scheduler station. Finally, since the IEEE 802.4 protocol is a widely-

accepted standardized protocol, a network using it could benefit in a

number of possible ways. These benefits might include having multiple

sources of proven low-cost station hardware components available for use

and a large base of user experience to draw upon.

The IEEE 802.4 protocol is not, however, completely problem free.

The biggest difficulty associated with the protocol is its complexity.

This complexity is derived from all the bus control functions that must

be implemented by all the stations that make up a network. These e

functions include initiating a token-passing sequence, recovering from

fault conditions caused by lost or multiple tokens, and allowing

stations to enter or exit the token-passing sequence (Myers, 1982:36).

Thesis Summary
This thesis developed and validated a model for simulating bus

token-passing protocols for avionics applications. The purpose of the

simulation model was to explore the effect of the different bus and

protocol parameters on the performance of the bus. Two separate

protocols were modeled, that of a protocol with distributed control and

a protocol with centralized control. The model was developed as part of

an overall simulation program which included simulation control, data

collection, and data analysis functions. The simulation model program

was written in the Pascal computer programming language. A series of

tests were conducted using the simulation model program to validate its

operation and modeling capabilities. The validation tests were

83
..,4

[..r OJ2'o-v':1,2 7 ~~ ~

successful. Initial performance tests under varying bus and protocol

design parameter conditions were conducted for the centralized token-

passing protocol using the simulation model program. Finally, the ,

performance of the centralized control and distributed control protocols

were compared.

The simulation model program developed by this thesis provides an ..

analysis capability for the centralized control protocol where none

existed before. Due to the large number of bus and protocol parameters

that can be varied, the simulation model program provides a capability

* for detailed analysis of the performance of a protocol in a variety of

network configurations and environments. Also, since the simulation

model program is modular in design and construction, additional protocol

characteristics can be added if a more detailed modeling capability is

needed or as more characteristics become known as the definitions for

the next-generation avionics network protocol are refined.

Recommendations

Four recommendations concerning the simulation model program are

presented and discussed in the following paragraphs.

First Recommendation. The testing done in Chapter IV using the

centralized token-passing protocol algorithm was not meant to be a

comprehensive test of the performance of this protocol. It was meant to

demonstrate the capabilities of the simulation model program and explore

basic performance questions concerning the centralized token-passing

protocol. Thus, the first recommendation would be to continue the

performance testing of the centralized token-passing protocol. An

example of additional tests that could be accomplished would be testing

84

.o.-o. .. *. 3:.o o. . , -.-. ° . , . .o.:O . ° • . _, "..''''''''% -.. , . "_•*-. -' '..-' :,-.. *2 ,. . . •.- ,. * *. - '•," ,"-" _ .. , "." - ,._.,'.

=- 7=--

the protocol with a standard network message scenario being developed

under the Avionics Laboratory contract (Kilass, 1985:169). The scenario

is meant to realistically define the number of stations and their

message loads for an advanced fighter avionics network.

Second Recommendation. The second recommendation is to use the

simulation model program to explore the performance of other token-

passing protocols. This would include the protocols being considered

for use in the next-generation avionics local area network and the IEEE I.

802.4 protocol in an avionics configuration. The IEEE protocol is

included in this recommendation because of the large-scale interest,

previous studies, and current work involving this standardized protocol.

Third Recommendation. The third recommendation involves an

improvement to the simulation model program. This recommendation would

involve changing the bus and station data input method to a more .

interactive type of user interface. This would involve changing the

building of the command file, which executes the program, from an off-

line to an interactive "question and answer" type interface. This would 1
relieve the user from many of the details concerning the formatting of

the bus configuration and station data.

Fourth Recommendation. The fourth recommendation concerns an L
addition to the protocol algorithms. It is recommended that the

capability for message and/or station priorities be added to the

protocol algorithms. The capability for message and station priorities

is important because it allows time-critical messages to be transmitted

with low delays without undue performance degradation for other messages

or stations. The priority option is especially important in real-time

85

.-.- 1i

environments such as avionics networks. For example, a message priority

capability could be obtained in the simulation model program by adding

additional message queues (linked lists) in the record representation of

a station. Each additional message queue would represent lower priority

messages. Also, an additional field would have to be added to the

record representation of a message to indicate the message's priority.

Summary

The validation and initial performance tests conducted using the

simulation model program were summarized and discussed in relation to

the avionics network environment. The thesis was summarized and

recommendations made for the improvement of the simulation program and

additional study efforts. The validated simulatioi model program

developed by this thesis can be a tool for further token-passing

protocol performance testing and evaluation.

86

..

RO-A163 950 SIMULATION MODEL OF N HIGH-SPEED TOKEN-PASSING BUS FOR 212
AVIONICS APPLICATIONS(U) AIR FORCE INST OF TECH

MROT-PATTERS0 AFI OH SCHOOL OF ENGI.. J E SPIETH
UNLSII DE 911 AFIT/GS/E G0-15 F/G 07/2 N

aIl

411 25 LA 11111.6

MICRCOP RSLTO TES CHR
NAIOA BRAUO SADA 1 93 A

- 122

Appendix A. User's Guide
I

This appendix is the simulation model program user's guide. How

the program is executed is discussed first. This is followed by an

explanation of the format for the input data and definitions of the

input data variables.

Program Execution

The simulation model program is executed in a batch mode. It is

submitted for execution by using the "submit" command. The format of

the submit command is:

submit/log=[] file name

There are various other options of the submit command and the user

should consult the various Digital Equipment Corporation reference

manuals, such as the VAX/VMS Command Language User's Guide and the

Programming in VAX-lI Pascal Manual for more detailed information. The

"log-[]" qualifier names the program's output file the same name as

"file name" but with a ".log" extension and places it in the current

default directory. The file named by "file name" is a command file that

contains the program execution statement and the input data needed by
L

the simulation model program. The file named by "file name" should have

a ".com" extension. This command file is created using a text editor

such as Digital Equipment Corporation's EDT.
-, %."

Command File

The command file has three parts consisting of the program

execution statement, the bus data input lines, and the station data r

87

input lines. These three parts will be described in the following p

paragraphs.

Program Execution Statement. The first line in the command file is

always the program execution statement. This statement is shown below.

$ run disk$user:[spieth.busjbussim

This statement instructs the VAX/VMS operating system to run the file

"bussim" in the directory "spieth.bus" on the "user" disk. The file

"bussim" contains the main Pascal module of the simulation model

program. The initial dollar sign must be included in the statement.

Bus Data Input Lines. The data for the bus configuration that is

to be simulated is passed to the simulation model program by including

the data in the command file. The data follows the program execution "71-

statement in the command file. The format of the bus data input lines

are shown below. The description includes the name of the variable, the

actual name used in the program, what type the variable is, and an

explanation of the meaning of the variable. The line numbers listed are

for reference only and are not part of the command file. The lower case

letters after the line number refer to the order of the variables on the

line. On line 3, for example, the variable description labeled 3a would

be first on the line followed by 3b and 3c, etc. Blank spaces between

the variables on the same line are ignored by the program.

For real type variables, a digit must be listed both before and

after the decimal point (0.5 instead of .5). When the explanation for a

variable states that it is not currently implemented in the program, or

it is not used based upon a certain condition, a value still has to be

included in the data for this variable in order to avoid execution errors.

88

.............. ."..

.

II'

Line Number Variable Name Type

2a. random number generator seed seed integer

This is the seed for the Digital Equipment Corporation random
number generator which is used in generating arrival times for Poisson
arrivals and message lengths f or exponential distributions.

3a. number of stations num stations integer

This is the total number of stations on the bus.

3b. first station first station integer

This is the address of the station that the simulation program
should begin the token-passing cycles with. It is currently not
implemented in the program. The program begins the token-passing cycle
with the station whose data is listed first in the station data part of

- the input data.

. 3c. bit rate bit rate real

The rate at which the bits are transmitted in bits/second.

4a. propagation factor propfactor real

A value less than one that is multiplied times the speed of light
to give a bus signal propagation speed. Typically this factor is
0.6667.

4b. length of the bus buslength real

The length of the bus in meters.

4c. station delay time stat delay real

The amount of time (in seconds) it takes a station to start
transmitting either a data or token message once it has received the
token.

5a. type of bus control bus control enumerated

The type of control, either distributed (distrib) or centralized
. (central), used in the token-passing protocol. Enumerated type

variables can not be read in or printed out. Therefore, for input, a 0
is meant to be distributed type control and a 1 to be centralized type
control.

89

. . . •.--.. - .
.

Line Number Variable Name Type

5b. direction of token passing tokenpass enumerated

Defines in what order or direction the token is passed based upon
the stations' addresses. There are three types; ascending (ascen),

descending (descen), and fixed (fixed). For input; 0 equals ascen, 1
equals descen, and 2 equals fixed. This variable is not implemented in
the program at this time.

5c. type of token-holding limit token hold-type enumerated

Defines if the token-holding limit is a time value (time) or a ..-

limit in terms of number of messages (num) that can be transmitted.

5d. token holding limit token hold limit real

The length of time a station may transmit messages (in seconds) or
the number of messages a station can transmit during one token-holding
turn.

6a. same/different arrival type stationarr enumerated .v

Defines if all the stations have the same type of arrival

condition. There are two choices, same (same) or different (diff).
For input; 0 equals same, and 1 equals different.

6b. arrival type stationarr_ type enumerated

If the stations all have the same type of arrival condition, this
variable defines which type it is. There are three choices, arrivals

according to: a deterministic distribution (constant arr), a Poisson
distribution (Poisson), or a continuous case (contin). For input; 0
equals deterministic, 1 equals Poisson, and 2 equals continuous. This
variable is not used when the stations have different types of arrival
conditions; that is, when the stationarr variable equals diff.

6c. same/different arrival rate station rate enumerated

Defines if all the stations have the same arrival rate. There are
two choices: same (same) or different (diff). For input, 0 equals same,
and 1 equals different. This variable is not used when the stations
have different types of arrival conditions; that is, when the
station arr variable equals diff.

6d. arrival rate station arr rate real

This variable represents the arrival rate of messages to a station
(messages/second). This variable is only used if the stations all have
the same type of arrival condition with the same rate; that is, both the

- station arr and station-rate variables must be equal to same.

90

, - .

2. - ~* **"*

"o

7a. same/different length distribution station len enumerated %

Defines if all the stations have the same type of message length
distribution. There are two choices, same (same) or different (diff).
For input; 0 equals same and 1 equals different.

r. e*

7b. length distribution type station-len type enumerated

If the stations all have the same type of message length
distribution, this variable defines which type it is. There are two
choices, deterministic (constant-len) or exponential (exp). For input;
0 equals deterministic and 1 equals exponential. This variable is not
used when the stations have different types of message length
distributions; that is, when the station len variable equals different
(diff).

7". E . "~

7c. same/different length mean station mean enumerated

Defines if all the stations have the same mean message length.
There are two choices: same (same) or different (diff). For input, 0
equals same and 1 equals different. This variable is not used when the
stations have different types of message length distributions; that is,
when the station len variable equals different (diff).

7d. length mean stationlenmean real

The mean message length in data words. This variable is only used
if the stations all have the same type of message length distribution
with the same mean message length; that is, both the station len and
station mean variables must be equal to same. Note: when the message
length distribution is of the deterministic type, the mean represents
the size of the message.

8a. number of bits in token token-bits real

The number of bits in the token message.

8b. number of overhead bits in a message overhead_bits real

The number of header and trailer bits (overhead) in a message.
Includes everything but the data bits.

8c. number of bits in one data word bits_per data word real

The number of bits in one data word.

9a. minimum number of data words min data words real

Defines the minimum number of data words allowed to be sent in a
message. Usually would be zero or one.

91

9b. maximum number of data words max data words real

Defines the maximum number of data words allowed to be sent in a
message.

10. simulation stop time aim stoptime real

The value of the simulation clock when the simulation should be
stopped. The simulation clock starts at value 0.0.

11. calculate token passing propagation delay times flag
calc_pass_prop__time boolean

Determines if the token-passing propagation time delays should be
calculated or read in.

Station Data Input Lines. Depending on a station's type of arrival

condition and type of message length distribution, from one to three

lines of data may need to be read in to completely describe a station.

Lines XX, YY, and ZZ define the data that is on these lines. At the

minimum, there would be one line of data for each station. At the

kJO maximum, three lines of data could be used for each station. The first

station listed is the station the simulation model program will begin

the token-passing cycle with. The rest of the stations are then listed

in the order they are passed the token.

Line Number Variable Name Type

XXa. station address (pointer) .attrib.address integer

The station's address.

XXb. passing address (pointer) .attrib.pass address integer

The address of the :tation that the current station passes the
token to.

XXc. distance (pointer) .attrib.distance real

The distance from the left starting point of the bus to the current
station in meters. Only used if the calculate token-passing propagation
delay times flag is true (1). A value needs to be listed in either
case.

92

.°, . .. ,..

•-.. - -.. .- ,- - -.. - g ,-.- , .- g . - -•. .-.- . .-.. ,.-, ., .•...-... .,.,.. , - ,,. - . -

c;:...Line Number Variable Name Type

XXd. token-passing propagation delay time
(pointer)-.attrib.pass..prop_time real

The time (in seconds) it takes the token to propagate from the
current station to the next station. Only used if the calculate token-
passing propagation delay times flag is false (0). Values only need to
be listed when the flag is false.

YYa. station arrival rate (pointer)^ .attrib.mess-arr-rate real

The particular station's message arrival rate. This line of data
is needed only if the stations all have the same type of message arrival
condition but different arrival rates. That is, the station arr
variable would be equal to same (same) and the station rate variable
would be equal to different (diff).

OR

YYa. station arrival type (pointer).attrib.messarrtype enumerated

YYb. station arrival rate (pointer) .attrib.messarrrate real

The particular station's type of message arrival condition and
the arrival rate. This line of data is needed only if the stations all

41 have different types of message arrival conditions. That is, the
stationarr variable would be equal to different (diff).

ZZa. station message length mean
(pointer)^.attrib.mess len mean real

The particular station's mean message length. This line of data is
needed only if the stations all have the same type of message length
distribution but different means. That is, the station len variable is
equal to same (same) and the stationmean variable is equal to different
(diff).

OR

ZZa. station message length distribution
(pointer)-.attrib.mess len type enumerated

ZZb. station message length mean
(pointer)^.attrib.mess len mean real

The particular station's type of message length distribution and
its mean. This line of data is needed only if the stations all have
different types of message length distributions. That is, the
stationlen variable is equal to different (diff).

93

- . --

7.1*

Sample Output.

! Second Test Case Mean Message Length - 32 Data Words
$ run disk$user: [spieth.bus]bussim
select bus configuration module
868
30 1 50.0e6
0.666666666 60.0 0.5e-6
1 2 0 83.32e-6
0 1 1 400.0
0 1 0 32.0
22.0 70.0 16.0
0.0 256.0
0.6
station data input module

1 2 2.0
40.0
2 3 2.5
200.0
3 4 3.0
2000.0
4 5 3.5
2000.0
5 6 4.0
200.0
6 7 4.540.0 L-

7 8 5.0
40.0
8 9 6.0
200.0
9 10 7.0
2000.0
10 11 8.0
2000.0
11 12 9.0
200.0
12 13 10.0
40.0
13 14 13.0

40.0
14 15 14.0 V.-
200.0 ''''

15 16 15.0

2000.0
16 17 16.0
2000.0
17 18 17.0
200.0
18 19 18.0
40.0

94

19 20 28.0I;- ''";'"40.0 "•-

20 21 29.0
200.0
21 22 30.0
2000.0
22 23 31.0
2000.0
23 24 32.0
200.0 K
24 25 33.0
40.0
25 26 55.0
40.0
26 27 56.0
200.0
27 28 57.0
2000.0
28 29 58.0
2000.0
29 30 59.0 .
200.0
30 1 60.0
40.0
calc first arr and len module
init stats module

1 2.50000E-09
2 2.500ooE-09
3 2.50000E-09
4 2.50000E-09
5 2.50000E-09
6 2.50000E-09
7 5.OOOOOE-09

8 5.OOOOOE-09
9 5.OOOOOE-09

10 5.OOOOOE-09
11 5.OOOOOE-09
12 1.50000E-08
13 5.OOOOOE-09
14 5.OOOOOE-09
15 5.OOOOOE-09
16 5.OOOOOE-09
17 5.OOOOOE-09
18 5.OOOOOE-08
19 5.OOOOOE-09
20 5.OOOOOE-09
21 5.OOOOOE-09
22 5.OOOOOE-09
23 5.OOOOOE-09
24 1.1000E-07
25 5.OOOOOE-09
26 5.OOOOOE-09

95

• '...'.- .-........................... ,.................-.*-".-.-..- .- ,-. .•- --.-.-. ,..-. .. ". .- - - .- ," -,,'% -

29 5.OOOOOE-09
30 2.90000E-07

simulation control module entered
centralized algorithm procedure called ~

96

Number Average Minimum Maximum
Station of access access access
Address access delay delay delay

(seconds) (seconds) (seconds)

1 16009.0 3.74811E-05 2.72989E-05 1.93834E-04
2 16009.0 3.74811E-05 2.72989E-05 1.93834E-04
3 16009.0 3.74811E-05 2.72989E-05 1.93834E-04
4 16008.0 3.74817E-05 2.72989E-05 1.93834E-04
5 16008.0 3.74818E-05 2.72989E-05 1.98632E-04
6 16008.0 3.74818E-05 2.72989E-05 1.98632E-04
7 16008.0 3.74818E-05 2.72989E-05 1.98632E-04
8 16008.0 3.74818E-05 2.72989E-05 1.98632E-04
9 16008.0 3.74818E-05 2.72989E-05 1.98632E-04

10 16008.0 3.74817E-05 2.72989E-05 1.79127E-04
11 16008.0 3.74817E-05 2.72989E-05 1.77890E-04
12 16008.0 3.74817E-05 2.72989E-05 1.77890E-04
13 16008.0 3.74817E-05 2.72989E-05 1.77890E-04
14 16008.0 3.74817E-05 2.72989E-05 1.77890E-04
15 16008.0 3.74817E-05 2.72989E-05 1.77890E-04
16 16008.0 3.74812E-05 2.72989E-05 1.82033E-04
17 16008.0 3.74812E-05 2.72989E-05 1.87766E-04
18 16008.0 3.74812E-05 2.72989E-05 1.87766E-04
19 16008.0 3.74812E-05 2.72989E-05 1.87766E-04
20 16008.0 3.74812E-05 2.72989E-05 1.87766E-04
21 16008.0 3.74812E-05 2.72989E-05 1.91659E-04
22 16008.0 3.74812E-05 2.72989E-05 1.82986E-04
23 16008.0 3.74812E-05 2.72989E-05 1.78776E-04.23 16008.0 3.74812E-05 2.72989E-05 1.78799E-04
24 16008.0 3.74812E-05 2.72989E-05 1.78799E-04
25 16008.0 3.74812E-05 2.72989E-05 1.78799E-04
26 16008.0 3.74812E-05 2.72989E-05 1.78799E-04
27 16008.0 3.74812E-05 2.72989E-05 1.78799E-04
28 16008.0 3.74812E-05 2.72989E-05 1.93834E-04 ""
29 16008.0 3.74812E-05 2.72989E-05 1.93834E-0430 16008.0 3.74812E-05 2.72989E-05 1.93834E-04

97

• :-.Number
of Average Minimum Maximum

Station data message message message
Address mess. length length length

sent (in bits and including overhead)

1 23.0 583.39 70.00 2422.00
2 129.0 537.10 70.00 3366.00
3 1145.0 607.89 70.00 3622.00
4 1161.0 580.83 70.00 3766.00
5 117.0 559.16 70.00 2646.00
6 21.0 596.48 86.00 1350.00
7 31.0 520.06 70.00 1782.00
8 117.0 590.48 70.00 1894.00
9 1098.0 580.35 70.00 4134.00
10 1120.0 568.33 70.00 3302.00
11 119.0 657.03 70.00 2262.00
12 20.0 624.40 86.00 1990.00
13 28.0 631.71 86.00 1718.00
14 128.0 624.25 70.00 2294.00
15 1155.0 565.63 70.00 3382.00
16 1164.0 569.78 70.00 3238.00 L
17 129.0 617.97 70.00 3382.00
18 18.0 614.00 150.00 1798.00
19 25.0 498.80 86.00 1926.00
20 116.0 666.14 86.00 2694.00
21 1128.0 559.97 70.00 4166.00
22 1098.0 577.32 70.00 3174.00
23 129.0 596.39 70.00 3798.00
24 28.0 490.00 86.00 1382.00
25 27.0 592.07 70.00 2374.00
26 131.0 548.17 86.00 2102.00
27 1072.0 579.55 70.00 3222.00
28 1051.0 551.61 70.00 3990.00
29 125.0 534.51 70.00 2230.00
30 22.0 479.45 102.00 1462.00

Total Total Total Total
number average number average

of access of message
accesses delay messages length

(seconds) (bits)

480243.0 3.74814E-05 12675.0 575.75

98

"-" -"- " < -. '." '.- -.'--'.-'. .-- -.''-'' "--'--'.-'..'°-.- .-..-..-- -.'..'. '.- .'-.'- '-., 2.'.'':- ,.i .i.-:-i-,i-.2..i .-ii . ";. i.":." k

Sttin Average Minimum Maximum
Station message message message
Address delay delay delay

(seconds) (seconds) (seconds)

1 3.861E-05 4.381E-06 1.300E-04
2 3.539E-05 4.739E-06 1.363E-04

3 3.250E-05 2.176E-06 1.520E-04
" 4 3.276E-05 1.580E-06 1.665E-04

5 3.020E-05 2.384E-06 1.123E-04
6 3.161E-05 1.189E-05 7.206E-05
7 3.589E-05 7.298E-06 7.908E-05
8 3.349E-05 3.368E-06 9.684E-05
9 3.271E-05 2.369E-06 1.357E-04

10 3.256E-05 2.086E-06 1.381E-04
11 3.390E-05 3.397E-06 9.298E-05
12 3.622E-05 1.433E-05 7.147E-05
13 3.171E-05 3.383E-06 7.702E-05
14 3.167E-05 2.831E-06 8.844E-05
15 3.203E-05 2.213E-06 1.444E-04
16 3.261E-05 2.325E-06 1.379E-04
17 3.411E-05 2.369E-06 1.098E-04
18 3.377E-05 8.017E-06 7.111E-05
19 3.586E-05 5.729E-06 9.835E-05
20 3.669E-05 4.709E-06 1.895E-04
21 3.196E-05 2.116E-06 1.073E-04
22 3.253E-05 2.444E-06 1.782E-04
23 3.439E-05 3.636E-06 1.066E-04
24 2.603E-05 5.305E-06 4.649E-05
25 3.159E-05 5.648E-06 9.596E-05
26 2.870E-05 3.368E-06 7.364E-05
27 3.290E-05 2.176E-06 1.148E-04
28 3.175E-05 2.265E-06 1.274E-04
29 3.083E-05 3.487E-06 9.008E-05
30 3.705E-05 1.283E-05 8.708E-05

Total average message delay was: 3.25021E-05 seconds

The normalized delay is: 3.21323 (without overhead)

The normalized delay is: 2.82257 (with overhead)

99
. - °

Total number of complete C.
token-passing cycles was 16008.00

The mean token-passing cycle time is 3.74811E-05 seconds

The mean throughput was 7.199736 megabits/second

With a bit rate of 50.0000 megabits/second
the ratio of throughput to the bit rate is: 0.143995

The mean efficiency was 0.211945

SPIETH job terminated at 10-OCT-1985 17:53:11.35

Accounting information:
Buffered I/O count: 53 Peak working set size: 367
Direct I/O count: 70 Peak page file size: 469
Page faults: 482 Mounted volumes: 0
Charged CPU time: 0 00:00:58.62 Elapsed time: 0 00:01:01.78

100

......................

-7- 7 7 - "ANNE- Mr-c- k7 - * ILI -- .- .,

Appendix B. Simulation Model Program Software

This appendix contains the Pascal software for the simulation model

program. The modules that make up the software are grouped according to

function and placed into seven files for ease of editing and

configuration control. Six of the files are then "included" in the

seventh file, using the VAX/VMS operating system %include directive, to

make the complete program. The %include directives are in the

declaration section of the main Pascal module in the file bussim.pas.

The modules and what file they are contained in are listed below.

Except for the bussim.pas file which is listed first, the other files

are listed in their "included" order. The modules within a file are

* listed in their compilation order. The software follows this listing.

File Name Module Name Module Number -

- bussim.pas
main 0.0

- declar.pas

constant, type, and variable declarations

queue.pas

pop 2.1.5.1

out frontqueue 2.1.5
inrear_queue 2.1.4.1

- stats.pas
min 2.1.1.1
max 2.1.1.2

sum delay 3.2
sum thruput 3.1
statistics 3.0

101

* -. *a M t t~..t~ .. ~ kt~ . M a~ . S . -*. Li. *U.

File Name Module Name Module Number

- update.pas
updateaccessstats 2.1.1
updatemessage stats 2.1.2
update delay_stats 2.1.3
update thruput stats 2.1.6

- setup.pas
mth$random 1.3.1.1
bus data input 1.1
station data input 1.2
calc arr and len 1.3.1
calc first arrand len 1.3
nit-stats- 1.4
calc token_propdelays 1.5
selbus setup 1.0

- simulate.pas
calc next arrandlen 2.1.4
dist-algor 2.1
cent-algor 2.2
simulate 2.0

F..

102

r°°

~ * .. *.-.-... '~~*~ . . *.~**-~-f

*W 0

* DATE: 23 Sep 1985
* VERSION: 1.3

* TITLE: bus simulation
* FILENAME: bussim.pas*

* COORDINATOR: Jim Spieth*
* PROJECT: Avionics Bus Simulation Model*
* OPERATING SYSTEM: VAX/VMS, Version 4.2 on VAX-11/782
* LANGUAGE: Pascal*
* USE: main pascal program
* CONTENTS: bussim*
* FUNCTION: simulate token-passing bus*

103

It I t .F.VC

' * DATE: 23 Sep 1985 *
• VERSION: 1.3 *

" * NAME: bussim (main) *
• MODULE NUMBER; 0.0 *

• * DESCRIPTION: main, executive module for bussim program *

* PASSED VARIABLES: none *

* RETURNS: none *
• GLOBAL VARIABLES USED: none *
* GLOBAL VARIABLES CHANGED: sim-clock numcycle *
• totalcyctime total _thruput total _eff *

-- * FILES READ: none *
* FILES WRITTEN: none *

* MODULES CALLED: selbussetup *
• simulate *
• statistics *

• CALLING MODULES: none *

* AUTHOR: Jim Spieth *

• HISTORY: 1.3 23 Sep 85 added totalcyc_time *
* 1.2 18 Sep 85 added update.pas include file *

1* . 24 Aug 85 added global thruput variables *

1.0 19 Aug 85 original *

program bussim(input, output)

%include 'declar .pas'
Zinclude 'queue.pas'
%include 'stats.pas'
Zinclude 'update.pas'
%include 'setup.pas'
%include 'simulate. pas'

begin
sim clock : 0.0
num cycle : 0.0
totalthruput :- 0.0
totaleff := 0.0
total cyctime : 0.0

selbussetup
simulate
statistics

end.

7--=

104

~~~~~~~~~~~~~~~~~~~~~~~~. .. ".." . . .. ." ............."." . ...."..... .. "". . ". . .... ... '.. ... . . .. .........- .".. .. "-.. .- .' "..--- -"



-IA71 J. W,;. r r~ w . W 1.712 .L

• DATE: 24 Sep 1985 *
• VERSION: 1.6 *

* TITLE: declarations for program bussim *
" * FILENAME: declar.pas *
i * COORDINATOR: Jim Spieth *

* PROJECT: Avionics Bus Simulation Model *
* OPERATING SYSTEM: VAX/VMS, Version 4.2 on VAX-11/782 *
"* LANGUAGE: Pascal *
" * USE: %include file in program bussim *
* CONTENTS: constant, type and var *
• FUNCTION: contain all declarations for program bussim *

const speed_light - 3.0e8 ;
type

choice = (same, diff)
arrival (constant arr, poisson, contin)
length distrib = (constant len, exp) ;
control - (distrib, central)
token_pass type - (ascen, descen, fixed)
tokenholdlimit_type = (time, num)

stats type record
address :integer ;
num-access : real ;
sum-access : real ;
min access : real ;
max-access : real
num-messages : real ;
sum-mess-len : real ;
min mess-len : real ;
max-mess-len : real
sum--mess-delay : real ;
min mess-delay : real ;
max mess-delay ! real

end ; (* of record *)
statsptr - ^ stats
stats = record

data : stats type
next : statsptr

end ; (* of record *)

message type record
sourceadd : integer ;
length : real .
arr time : real ; ,,

end ; (* of record *) ,messageptr message

105

~ftT.



message - record
info message type
nextmessage : messageptr

end ; (* of record *)

stto~t station iner;
station type =record

address : integer; :

pass address: integer;
mess arr type arrival ;
mess arr rate: real;
distance : real ;
mess lentype : length distrib
mess lenmean : real;
passproptime : real ;
last access : real; -
front-_mess_queue messageptr
rear messqueue messageptr

end ; (* of record *)

station = record
attrib : station type
next station : stationptr

end ; (* of record *)

var
frontstation, currentstation : station__ptr

front stats, current stats : stats_ptr

bit rate, propfactor,
sig_prop, sigdelay,
buslength, stat delay,
overhead bits, token_bits,
bitsper data word, token hold-limit,
min datawords, max data words,
sim-clock, simls top~time,
total thruput, total eff,
total cyctime, num_cycle,
station arr_rate, stationlenmean : real

first-station, num stations, seed : integer

station arr, station rate,
station.len, station mean : choice

station arr type : arrival
station -len_ type : length distrib
bus control : control;
tokenpass : token_pass type
token hold type : tokenhold-limit type;
calc_pass_prop_time : boolean ;

106



V-W: K-- &n 4-A - d.i 1 - ,- . -

* *.. *.*

* DATE: 18 Aug 1985 *
* VERSION: 1.0 *

* TITLE: queue (linked list) related procedures *
* FILENAME: queue.pas *
" * COORDINATOR: Jim Spieth *

*, * PROJECT: Avionics Bus Simulation Model *
• OPERATING SYSTEM: VAX/VMS, Version 4 on VAX-11/782 *
* LANGUAGE: Pascal *
• USE: %include file for bussim program *

• CONTENTS: pop
• outfront_queue *
* in_rear_queue *

I * FUNCTION: procedures for queue (linked list) operations *
• * , -'

*° *

• DATE; 18 Aug 1985 *
.-* VERSION: 1.0 *

• *"o'

NAME: pop *
• MODULE NUMBER: 2.1.5.1
• DESCRIPTION: removes first message in queue (linked list) *
" * PASSED VARIABLES: list - pointer to front of list *

* RETURNS: list *
• GLOBAL VARIABLES USED: none *

• * GLOBAL VARIABLES CHANGED: none *
• FILES READ: none
• * FILES WRITTEN: none *
* MODULES CALLED: none ,
• CALLING MODULES: out frontqueue *
* * '

. * AUTHOR: Jim Spieth *
• HISTORY: Adapted from Dale and Orshalick, 1983:443 *

-******************************** .*

procedure pop(var list : messageptr )

var ptr : messageptr

begin
ptr :-list
list := list^.nextmessage
dispose(ptr)

- end;

107
.. .. ..........- ssc.- -'. .



. .4 - . -. . . -. ..-.-. ..... r-..j. 1 . o. .. 2 . " . .-.-.---.-. ' ." - r - r r. ; .V-

,.* >*

• DATE: 18 Aug 1985 *
* VERSION: 1.0 *

NAME: outfront_queue *
* MODULE NUMBER: 2.1.5 *

* DESCRIPTION: removes message from front of queue (linked *
* list) and checks for empty queue *
* PASSED VARIABLES: front - pointer to front of list *
• rear - pointer to rear of list *
• RETURNS: front, rear *
• GLOBAL VARIABLES USED: none * --

• GLOBAL VARIABLES CHANGED: none *

FILES READ: none *
• FILES WRITTEN: none

* MODULES CALLED: pop ,
• CALLING MODULES: dist algor *

* AUTHOR: Jim Spieth *
• HISTORY: Adapted from Dale and Orshalick, 1983:454 *
* * -.

procedure outfrontqueue(var front, rear : message-ptr )

begin
if (front = nil)

then writeln('queue is empty')
else

begin
pop( front )
if (front = nil)

then rear : nil
end

end;

7 71

108

r

A ...-. X . .. ~~ *--..



*o • DATE: 18 Aug 1985 *
• VERSION: 1.0 *
, *
• NAME: in rear_queue *
* MODULE NUMBER: 2.1.4.1 *

DESCRIPTION: inserts element at rear of queue *
PASSED VARIABLES: front, rear, element *
RETURNS: front, rear *

* GLOBAL VARIABLES USED: none *
• GLOBAL VARIABLES CHANGED: none *
• * FILES READ: none *
• * FILES WRITTEN: none *
• MODULES CALLED: none ,

• CALLING MODULES: calc next arr and len *

• AUTHOR: Jim Spieth *
• HISTORY: Adapted from Dale and Orshalick, 1983:454 *
* ***************************** **)-"

procedure inrearqueue( var front, rear : message_ptr
var one mess : message_type )

var
- ptr : message_ptr

begin
new(ptr)
ptr .info :-onemess ;
ptr^.next message : nil ;
if rear - nil

then
begin
rear :-ptr
front : ptr
end

else
begin
rear^.nextmessage : ptr
rear : ptr
end

end

109

.0



"* DATE: 24 Sep 1985 *

• VERSION: 1.7 *

* TITLE: statistics *
• FILENAME: stats.pas *
• COORDINATOR: Jim Spieth *
* PROJECT: Avionics Bus Simulation Model *
* OPERATING SYSTEM: VAX/VMS, Version 4.2 on VAX-11/782 *
• LANGUAGE: Pascal *
* USE: Zinclude file for bussim program *
• CONTENTS: mn *

* max*
"* sumdelay *

• _sum__thruput *
• statistics *

FUNCTION: perform statistics operations

, *

* DATE: 18 Aug 1985 *
• VERSION: 1.0 *

* NAME: min (function) *
• MODULE NUMBER: 2.1.1.1 *
* DESCRIPTION: picks minimum of two real numbers *

• PASSED VARIABLES: reall and real2 *
• RETURNS: mimimum of the two *
• GLOBAL VARIABLES USED: none *
* GLOBAL VARIABLES CHANGED: none *
• FILES READ: none *
* FILES WRITTEN: none *
• MODULES CALLED: none *
• CALLING MODULES: update-access stats *
• updatemessagestats *
• updatedelay_stats *
* AUTHOR: Jim Spieth *
* HISTORY: *
• * •.

function min (reall, real2 : real ) : real

begin
if reall > real2

then min :- real2
else mn : reall

end

110
. .*. . *-* * *-".. ** . *-..' *]~**:-:

.............................................................



* ". .N -- - -? .. --

"* DATE: 18 Aug 1985 *

* VERSION: 1.0 *
• * "'-

* NAME: max (function) *
* MODULE NUMBER: 2.1.1.2 *
• DESCRIPTION: picks maximum of two reals *
• PASSED VARIABLES: reall, real2 *
• RETURNS: maximum of the two *

GLOBAL VARIABLES USED: none
GLOBAL VARIABLES CHANGED: none *

* FILES READ: none *
• FILES WRITTEN: none *

MODULES CALLED: none *
• CALLING MODULES: updateaccessstats * .
• updatemessage stats *
• updatedelay_stats *
• AUTHOR: Jim Spieth *
• HISTORY: *

S************ ****************** ****

function max (reall, real2 : real ) : real

begin
. if reall > real2

then max : reall
else max : real2

end

r

111:



%7 -. r'.:71:- -.

DATE: 18 Sep 1985 *

* VERSION: 1.1 *

• NAME: sum delay *

* MODULE NUMBER: 3.2 *

* DESCRIPTION: calculates and prints message delay values *

* PASSED VARIABLES: none *
* RETURNS: nothing *
* GLOBAL VARIABLES USED: numstations, front stats *
" * frontstation, bit rate *

* GLOBAL VARIABLES CHANGED: current stats current station *
• FILES READ: none *

* FILES WRITTEN: none *

• MODULES CALLED: none * L
* CALLING MODULES: statistics *

* AUTHOR: Jim Spieth *

* HISTORY: *

• 1.1 18 Sep 85 added 2nd form of normalized delay *

• 1.0 30 Aug 85 original *

procedure sumdelay(total num mess, totalave mess len : real)

* var

h, one, yes : integer ;

totalsum delay, avedelay,

total ave, full delay__ratio, delay_ratio : real

begin
one := 0;
total sum delay := 0.0
current stats :- front stats

current station := frontstation
case station arr of

same : case stationarrtype of

constant-arr : case station-rate of
diff : yes := 1
same : if station arr rate 0.0

then yes : 0
else yes : I

end ; (* of case
poisson : yes : 1

contin : yes : 0;
end ; (* of case

diff : yes : 1
end ; (* of case

112

5,-..



if yes 1then
begin
for h : 1 to num stations do
begin
if curreut_station^.attrib.mess-arrtype <> contin
then
if ((current station^.attrib.messarrtype <> constantarr) or

(current-station^.attrib.messarr-rate <> 0.0 ))
then
begin
if one - 0 then
begin
page
writeln(' Average Minimum Maximum') ;
writeln('Station message message message') ;
writeln('Address delay delay delay' ) ;
writeln(' (seconds) (seconds) (seconds)');
writein;
end;
totalsumdelay :- totalsum delay +

current stats^.data.sum messdelay ;
if current stats^ .data.num _messages - 0.0

then ave-delay :-0.0
else ave-delay :- current stats^.data.sum mess delay /

current stats^.data.nummessages
writeln(current-stats^.data.address:4,

ave delay:l0, '
current stats^.data.min mess delay:l0,
current-stats-.data.max-mess delay:10 )

one :- one + 1
current station :- current station^.next station ;
currentstats : current stats^.next ; .
end

end ; (* for *)
if one > 0 then

begin
total ave :- totalsumdelay / total num mess ;
delay_ratio :- totalave / ((totalavemesslen - overhead-bits) /

bitrate)

full delayratio : total ave / (total ave mess len / bit rate)
writeln ;
writeln('Total average message delay was: ' total ave, ' seconds');
writeln ;
writeln('The normalized delay is: ' delayratio:15:5,

# (without overhead)')

writeln
writeln('The normalized delay is: ' full delayratio:15:5,

(with overhead)')
writeln
end; *

end ; (* if yes *)
end;

113

'.* -* % . *...- .*- - -, --. .- .. .. .. . . . . . . .......... . . . . • . - - - - . , - " .'



* DATE: 23 Sep 1985*
* VERSION: 1.1 *

* NAME: sumthruput * ** MODULE NUMBER: 3.1* ,':

* DESCRIPTION: calculates and prints throughput values *

* PASSED VARIABLES: none *

* RETURNS: ncthing *

* GLOBAL VARIABLES USED: numcycle, totalthruput *

* total eff, total cyctime *

* GLOBAL VARIABLES CHANGED: none *

* FILES READ: none *

* FILES WRITTEN: none *

* MODULES CALLED: none *

* CALLING MODULES: statistics *

* AUTHOR: Jim Spieth *

* HISTORY: 1.1 23 Sep 85 added totalcyc_time & avecyc__time *
' 1.0 23 Aug 85 original *

procedure sumthruput

* k var
avethruput, aveeff, avecyc_time,
mod bit rate, thruputratio : real

begin
mod bit_rate :- bit_rate / l.Oe6
ave_thruput :- (totalthruput / numcycle) / l.Oe6

ave-eff := total eff / numcycle
avecyc_time : total cyc time / numtcycle
thruput ratio := ave thruput / mod bit-rate
page
writeln('Total number of complete ')
writeln(' token-passing cycles was', numcycle:14:2)
writeln;
writeln('The mean token-passing cycle time is ', avecyc_time,

seconds');
writeln
writeln('The mean throughput was', ave thruput:12:6,

megabits/second')
writeln
writeln('With a bit rate of', mod bit rate:1O:4,' megabits/second');

write (' the ratio of throughput to the bit rate')

writeln(' is:', thruputratio:12:6)
writeln
writeln('The mean efficiency was', ave-eff:12:6)

-" writeln ;
' -.- end;

114



.. 6

|*w*

"'" * DATE: 27 Sep 1985 *
• VERSION: 1.3 *

* NAME: statistics *
* MODULE NUMBER: 3.0 *
• DESCRIPTION: calculates and prints station and summary *
* statistics *

* PASSED VARIABLES: none *
• RETURNS: nothing *
* GLOBAL VARIABLES USED: front stats ,
* GLOBAL VARIABLES CHANGED: currentstats *
* FILES READ: none *
• FILES WRITTEN: none *

• MODULES CALLED: sumthruput sumdelay *
• CALLING MODULES: bussim (main) *
• *..."

* AUTHOR: Jim Spleth *
* HISTORY: *

1.3 27 Sep 85 improved headings

• 1.2 30 Aug 85 added sum delay call *
1* . 23 Aug 85 added sum thruput call *

* 1.0 19 Aug 85 original

procedure statistics ; L

var
i : integer
totalnum._access, totalaccess,
aveaccess,
total num mess, total mess len,
ave_mness_len,,
total-ave-access, totalavemess-len : real

begin
total num access :- 0.0
total access :- 0.0 ;
ave access :- 0.0
totalnummess : 0.0

- total mess len : 0.0
ave _messlen : 0.0
total-ave access :- 0.0
total-avemess-len :- 0.0
page

writeln(' Number Average Minimum Maximum');
writeln('Station of access access access');
writeln('Address access delay delay delay');
writeln(' (seconds) (seconds) (seconds)');
writeln
current stats := front-stats

115

" -~-.-~ - ...- -.

'..*.".-



7 7 - TV~

. for i :1 to num stations do
-::--: begin .

total num access :- total num access +
currentstats^.data.num access ;

total access :- total access + current stats7.data.sum-access ;
ave-access :u currentstats'.data.sumaccess /

(currentstats^.data.numaccess - 1.0 )
writeln(currentstats^.data.address:4,

current stats .data.num access:13:1,' ', ave-access,
,currentstats^.data.minaccess,

current stats^.data.max access )
currentstats : current-stats^.next;
end;

page;
writeln(' Number ') ;
writeln(' of Average Minimum Maximum ');
writeln(tStation data message message message ');
writeln('Address mess. length length length ');
writeln(' sent in bits and including overhead ) ');
writeln ;
current stats := front stats ;
for i : 1 to num stations do

begin
total num mess : total num mess + current stats .data.num messages ; -
totalmess len := totalmesslen + current-stats^.data.sum _messlen
if current stats^.data.nummessages - 0.0

OIL then avemess len : 0.0
else ave mess-len : current stats^.data.sum mess len /

current stats^.data.nummessages
writeln(currentstats^.data.address:4,

current stats^.data.num_messages:13:1, ave messlen:14:2,
currentstats .data.min mess len:14:2,
currentstats^.data.maxmesslen:14:2 )

currentstats : currentstats^.next-;
end;

totalave access := total access / (total num access - numstations)
total ave mess len : total mess len / total num mess
writeln
writeln ;
writeln
writeln(t  Total Total Total Total ')
writeln(' number average number average ')
writeln(' of access of message ')
writeln( accesses delay messages length ') ;
writeln(' (seconds) (bits) ') ;
writeln".
writeln(total num access:10:l, ' ' total ave access,

total num mess:12:l, total ave mess len:14:2 )

sum__delay(totalnummess, total-ave messlen) ;
-.- sum thruput

end ; (**** statistics ****)

116

[:: : . . . ... .. . . . . , .



_I - - - - ' .- i]- - w 'a. .--* . . -*;---. - - - --- -L, -. - -
-  

m M U . L

wi

DATE: 23 Sep 1985 *
VERSION: 1.1 *

* TITLE: update statistics *
FILENAME: update.pas *

* COORDINATOR: Jim Spieth *
• PROJECT: Avionics Bus Simulation Model *
* OPERATING SYSTEM: VAX/VMS, Version 4.2 on VAX-11/782 *
• LANGUAGE: Pascal *
• USE: Zinclude file for bussim program *
• CONTENTS: updateaccessstats *
• updatemessage_stats *
• updatedelay_stats *
• updatethruput stats * I.-,
* FUNCTION: perform data collection and updates *

1.1

-....................................... . . . . . .



I-I-..'..

"* DATE: 31 Aug 1985 *
VERSION: 1.0 *

.* NAME: update access stats *
:.* MODULE NUMBER: 2.1.1 *
• DESCRIPTION: updates access delay times for each station *
i * PASSED VARIABLES: time of station's last access *
• RETURNS: time of this access - sim clock *
+* GLOBAL VARIABLES USED: sim_clock current stats *
""* GLOBAL VARIABLES CHANGED: none-*
: * FILES READ: none *

* FILES WRITTEN: none*
• MODULES CALLED: min max *
• CALLING MODULES: distalgor cent-algor *

• AUTHOR: Jim Spieth *
• HISTORY:

procedure update access stats( var last-access : real
pass-cyc : integer )

var
current-delay : real

begin
current stats^.data.num access : current stats^.data.num access

+ 1.0
if pass cyc > I

then
begin
currentdelay := sm_clock - lastaccess
current stats^.data.sum access :- current stats^.data.sum access

+ current delay
current _stats^.data.min access : min(

currentstats^.data.minaccess,
currentdelay )

current stats^.data.max access :- max(
currentstats^.data.maxaccess,

currentdelay )
end;

last-access := sm_clock
end

118

? .:-+ -.-.- :-'.:. '-...-- .. -: .- .. .-?--"-. - .--- .-? .?.i .. -/ ;-. / '.i ---. i : .. :'- ? '-. .. : -- ". ---..L .:- ----



j. .=. * DATE: 21 Aug 1985 *

•* VERSION: 1.0 *

• NAME: update message stats *
* MODULE NUMBER: 2.1.2 *
• DESCRIPTION: updates station's message statistics *
• PASSED VARIABLES: message length *
* RETURNS: nothing *
• * GLOBAL VARIABLES USED: current stats *
• GLOBAL VARIABLES CHANGED: none *

* * FILES READ: none
• FILES WRITTEN: none *
• MODULES CALLED: min max *

CALLING MODULES: distalgor cent algor *.,
• * ,-

• * AUTHOR: Jim Spieth *
* HISTORY: *

* ***************************************************************)@ --

procedure update messagestats ( mess len real )

begin
current stats^.data.num messages :a current stats'.data.num messages

+ 1.0
current_stats^.data.summess len :" currentstats^.data.summesslen

+ mess len
currentstats .data.min_mess len : min(

currentstats data.minmesslen,
mess len )

current stats .data.maxmesslen :- max(
current_stats^.data.max mess-len,

mess len )
end;

119

..............
~ ~...- - \. ~- * .**~. ~ .. . . ' .



S* DATE: 30 Aug 1985
• VERSION: 1.0 *

* NAME: update delaystats *
v* MODULE NUMBER: 2.1.3 *

* DESCRIPTION: updates station's message delay statistics *
' * PASSED VARIABLES: message arrival time *

• RETURNS: nothing *

GLOBAL VARIABLES USED: current stats sim clock
GLOBAL VARIABLES CHANGED: none- *

i * FILES READ: none ,
• FILES WRITTEN: none *
I * MODULES CALLED: min max *
* CALLING MODULES: dist algor cent algor *

• * AUTHOR: Jim Spieth *
• HISTORY: *

procedure update delay_stats ( arrtime : real )

"" var
delay : real

begin
delay : sim clock - arr time
currentstats^ .data.summess delay :

current stats .data.sum messdelay + delay
current stats .data.min mess-delay-:-

min(current stats^.data.min mess delay, delay )
currentstats data.maxmessdelay :

max(currentstats .data.max-messdelay, delay ) ;
end;

120



",,..h %. ** .....

-* DATE: 23 Sep 1985 *
• VERSION: 1.1

* NAME: updatethruput_stats *
* MODULE NUMBER: 2.1.6 *
• * DESCRIPTION: calculates and updates data for throughput *
• calculations *
• PASSED VARIABLES: token-passing cycle time - cyctime *
• sum of data bits - sum data *
• sum of overhead bits - sum over *
* RETURNS: sum data and sum over set to zero *

* GLOBAL VARIABLES USED: none *
* GLOBAL VARIABLES CHANGED: totalthruput total eff *

• total cyc,_time num cyc le *|.
FILES READ: none *

• FILES WRITTEN: none
• MODULES CALLED: none *
* CALLING MODULES: dist algor centalgor *

* * r
• AUTHOR: Jim Spieth ,
• HISTORY: *
• * 1.1 23 Sep 85 added total cyc time *
"* 1.0 23 Aug 85 original *

procedure update_thruput_stats(cyc_time : real ; var sumdata,
sum over : real ) ;

var
eff,
thruput : real

begin
num__cycle :- numcycle + 1.0
thruput :- sumdata / cyctime
eff :- sum data / (sumdata + summover)
total__thruput :- totalthruput + thruput
total eff :- total eff + eff
totalcyc_time :- total_cyc_time + cyc__time
sumdata :-0.0
sum over : 0.0

end

121

i -... . . .

. . . . . . . . . ...-- .... . . . . . . . . .

"* -. *'.* .. '.*~ . ~ .... *.-. 2 ~ ~ ~ ~ - ~..-



-%

* DATE: 24 Sep 1985 *
* VERSION: 3.1 *

* TITLE: Setup *
• FILENAME: setup.pas *
• COORDINATOR: Jim Spieth *
• PROJECT: Avionics Bus Simulation Model *

OPERATING SYSTEM: VAX/VMS, Version 4.2 on VAX-11/782 *
* LANGUAGE: Pascal *
• USE: Zinclude file for program bussim *
• CONTENTS: mth$random *
• bus data _input ,

• * t-station data input *
* calc arr andlen ,
• calc_first__arrandlen *
• int_stats *

* calc tokenprop_delays *
• sel bus-setup *
• FUNCTION: setup modules for bus configuration *

• **** ** * *** ***** **** ** ***** **** *********** ***** ********** ) "-

• *.'-"

• * DATE: 7 Sep 1985
• * VERSION: 1.0
• *,'-

• NAME: mth$random (DEC run-time library function) *
* MODULE NUMBER: 1.3.1.1 *
• DESCRIPTION: uniform random number generator *
• PASSED VARIABLES: seed .
• * RETURNS: random number *
• GLOBAL VARIABLES USED: none *
• * GLOBAL VARIABLES CHANGED: none *
• FILES READ: none *
• * FILES WRITTEN: none *
SMODULES CALLED: none *
•. * CALLING MODULES: calc arr and len *

• AUTHOR: Digital Equipment Corp. *
• * HISTORY: *
• * .

[external,asynchronous] function mth$random (var seed : integer ) *"'

: real ; extern ;

122

_ ,'_ ._ .-_."e_.'_....._..........'.............-..-..........--_-....-....-......-.-............-..-* * . *.*. .. . . *. .



* '.(**************************************************************** "

* DATE: 24 Sep 1985 *
* VERSION: 2.1 *

• * NAME: bus data input *
• * MODULE NMBER: 1.1 *
• DESCRIPTION: reads in bus attributes (data) *
• * PASSED VARIABLES: none *
• RETURNS: nothing *
• GLOBAL VARIABLES USED: none *
• GLOBAL VARIABLES CHANGED: seed num stations first station*
• bit rate propfactor bus-length statdelay *
• bus__control tokenpass tokenholdtype tokenhold_limit*
* stationarr station__arr__type stationrate station arrrate*
* station len stationlen_type station mean station-len-mean*

token bits overhead bits bitsper dataword *
•* mn _data words max_datawords sim_ stop__time *
• * FILES READ: input *

FILES WRITTEN: none *
* MODULES CALLED: none *
• * CALLING MODULES: selbussetup *
• * -.- '

• AUTHOR: Jim Spieth *

• HISTORY: *
* 2.1 24 Sep 85 added tokenholdtype *

2.0 26 Aug 85 added enumerated reads and cases *
• 1.0 20 Aug 85 original *

procedure busdatainput

var k, 1, m: integer;

begin
readln(seed)
readln(num stations, first station, bit rate )
readln(prop__factor, buslength, stat__delay )
readln(k, 1, m, token_hold_limit )
case k of

0 : buscontrol : distrib
1 : bus control : central;

end ; (*-case *)
case 1 of

0 : token pass : ascen
1 : tokenpass : descen
2 : token-pass := fixed ;

end ; (* of case
case m of

0 : token hold type :- time
1 : token hold type : num

end ; (* of case *)

123

: .,. ,, . ,. , ... . ... ., .. ., .. ... .. . . ... ..... .. .. ... .. .. . .:



readln(k, 1, m, station-arr rate )
case k of

0 stationarr :-same
1 : stationarr : diff

end; (* of case
case 1 of

0 : station arr type := constantarr
1 : station arrtype : poisson ;
2 : stationarrtype : contin ;

end ; (* of case *)
case m of

0 station rate := same
1 station rate diff

end ; (* of case
readln(k, 1, m, station len mean ) ;
case k of

0 : station len :-same
1 : station len : diff

end ; (* of case
case 1 of

0 : stationlen_ type : constantlen ;
1 : station_len__type : exp

end ; (* of case *)
case m of

0 station mean same
1 station mean :diff

end ; (*of case*)
readln(token bits, overhead bits, bitsperdataword )
readln(min_datawords, max-datawords )
readln(sim stop time )

end ; (**** bus data input ****)

12'.'

..-. . . .... . .



.. . .. ... . ..... .. . .. ... b- -- -. *° .--

* DATE: 13 Sep 1985 *
* VERSION: 1.2 * S

* NAME: stationdatainput *
* MODULE NUMBER: 1.2 *
* DESCRIPTION: reads in station attributes (data) * .
* PASSED VARIABLES: none *
* RETURNS: nothing *
* GLOBAL VARIABLES USED: front station current station *
* station arr station len *
* stationarrtype stationlentype *
* stationrate stationmean *

* station arr rate station7len mean *
* Cac_pass_prop__time bits_per data_word *
* GLOBAL VARIABLES CHANGED: front station current station *
* calc_pass_prop__time *
* FILES READ: input *
* FILES WRITTEN: none *
* MODULES CALLED: none *

6 * CALLING MODULES: selbussetup ,

* AUTHOR: Jim Spieth *
* HISTORY: 1.2 13 Sep 85 added calc_passprop__time *

o . * 1.1 27 Aug 85 added station case statements *

* 1.0 18 Aug 85 original *

procedure stationdatainput

var temp_station : station-type ;
ptr : stationptr
h, i, J, k : integer

begin
writeln('station data input module')
readln( h )
if h = 0

then calcpass_prop__time : false 1
else calc-pass_prop__time : true

for i := 1 to num-stations do
begin
if calcpass_prop_time

then
readln(temp_s tation.address, L

temp_s tation.passaddress,
temp_station.distance)

else
readln(tempstation.address,

temp_station.passaddress,
- temp_station.distance,

temp_station.passproptime )

125

.. . . . .............. ....., . o. ....... .. ...... .* . - -.



case station arr of
*--.-xsame begin

temp_station.mess arr type stationarrtype
case station rate of

same : temp__station.mess arrrate := stationarrrate;
diff : readln(tempstation.messarrrate)

end ; (* of case *)
end

diff begin
readln( j, tempstation.messarrrate ) ;
case j of

0 tempstation.messarrtype := constant arr ;
1 tempstation.messart type : poisson
2 : tempstation.mess arr type contin

end ; (* of case *)
end ;.

end ; (* of case *)
case station len of

same begin
tempstation.messlen type stationlentype

A case station mean of
same : temp station.mess len mean station len-mean;
diff : readln(tempstation.mess len mean)

end ; (* of case *)
end

diff begin
readln(k, tempstation.mess len mean )
case k of

0 : temp_station.messlen type := constantlen
1 : temp__station.messlen_type exp

end ; (* of case *)
end ;

end ; (* of case *)

tempstation.mess len mean := temp_station.messlenmean *
bits per dataword

temp_station.lastaccess :- 0.0
temp_station.front messqueue : nil
tempstation.rear messqueue nil
new(ptr)
if i = 1

then front station :- ptr
else current station ^ .next station : ptr

ptr .attrib := temp._station
if i - num stations

then ptr ^ .nextstation frontstation
else ptr ^ .next station nil

currentstation := ptr ;
end ;

end ; (**** stationdatainput ****)

126

.....................................-... "



- * - .- !.. . L

':% ,*.-

* DATE: 7 Sep 1985 *
* VERSION: 2.0 *

* NAME: calc arr and len *
* MODULE NUMBER: 1.3.1 *

."* DESCRIPTION: calculates arrival time and length of a new *
* message for a station *
* PASSED VARIABLES: station arrival type and rate, *
* station length distribution type and mean*
* RETURNS: message arrival time and length *
* GLOBAL VARIABLES USED: sim clock seed *

bits_perdataword min data words max data words *
* GLOBAL VARIABLES CHANGED: none *
* FILES READ: none *
" * FILES WRITTEN: none *

* MODULES CALLED: none *
* CALLING MODULES: calc first arr and len *

* AUTHOR: Jim Spieth *
* HISTORY: *
* 2.0 updated dummy calculations to real ones *
* 1.0 20 Aug 85 dummy constant, Poisson & exp calcs *

procedure calc arr and-len(arr type : arrival
arr rate : real,
len type : lengthdistrib ;
len mean : real
var arrival time : real
var message-len : real )

var length : integer

begin
case arrtype of

constant arr : begin
if arrrate = 0.0

then arrival time : 0.0
else arrival-time : sim clock + (1.0 / arr rate);

end;
poisson : arrival time : sim clock -

((1.0 / arrrate) * ln(mth$random(seed)))
contin : arrival time : 0.0 ; L2

end ; (* of case*)

127



* .case len type o
constant len message len :ulen mean
exp :begin

message~len :-abs(len mean * ln(mth$random(seed)));
*message~len :message len /bitse daaword

length :round(messagelen)
message~len := length
if message len > max data words

then message len Umax-data words
else if message-len < m _-data words

then message lIen :~min data words
message~len Umessage len *bitsyper-data word
end

end (*of case
end ;(** calc arr-and-len **)

128



* DATE: 27 Aug 1985 *

• VERSION: 1.1 *

NAME: calc first arr and len
• MODULE NUMBER: 1.3 *
• DESCRIPTION: calculates arrival time and length of first *
* messages for all stations *
• PASSED VARIABLES: none *
* RETURNS: none *
• GLOBAL VARIABLES USED: currentstation frontstation *
* GLOBAL VARIABLES CHANGED: currentstation *
• FILES READ: none *
• FILES WRITTEN: none *

MODULES CALLED: calc arr and len *
• CALLING MODULES: selbussetup *

• AUTHOR: Jim Spieth *
• HISTORY: * .
S1.1 27 Aug 85 added test for constant arr rate of 0.0*

1.0 20 Aug 85 original

procedure calc first arr and len

vari : integer ; .
arrival time, message len : real
temp-mess : messagetype
ptr : messageptr ;

begin
writeln('calc first arr and len module')
currentstation : frontstation

129

=-- '=2 '.-'J--'-N~m'o-'-', -'m -' '.2t'=_'-T=2 :".%_N__% ............ "........-..........._,.......-... _. _. .mN.



forb 1~ 1 to numstations do .

if ((current station^ .attrib.mess arr type <> constant arr) or
(current~station-.attrib.mess-arr-rate <> 0.0 )

then
begin
caic arr and-len(

current station^.attrib.mess arr type,
current~station-.attrib.mess-arr-rate,
current -station^.attrib.mess-len-type,
current station^.attrib.mess len_mean,

arrival time, message len);
temp_mess.source --add :- current -station^.attrib.address;
temp-mess.length :- message~len;
temp-mess.arr -time :- arrival-time
new(ptr)
ptr^.info :temp-mess;
ptr-.next message :- nil;
current station^.attrib.front messqee t
current station^.attrib.rear mess-queue :~ptr
end ;

current station :- current station^ .next station L
end

end ;(**calc first arr and len**)

130



• * DATE: 22 Aug 1985 *
• VERSION: 1.0 *

-i * NAME: init_stats *

• MODULE NUMBER: 1.4 *
• * DESCRIPTION: initializes the station statistics linked list*
• PASSED VARIABLES: none *
* RETURNS: nothing *
• GLOBAL VARIABLES USED: frontstation *
* GLOBAL VARIABLES CHANGED: frontstats currentstats *
* FILES READ: none *
• * FILES WRITTEN: none *
• MODULES CALLED: none

CALLING MODULES: selbussetup •
• *,.-

• * AUTHOR: Jim Spieth *

S HISTORY:*

procedure init stats;..

var '.

temp__stats : statstype
ptr : statsptr

* j : integer ;

begin
writeln('init stats module') ;
current-station : front-station

131

131i~i

*, .. . . - - * ,,.-*-.*

. . .. . . . . . . . . . . . . * -. .* .*..* * . * .. * . " . .- ":. .



for j 1 I to num, stations do
* begin

temp_ stats.address :- current -station-.attrib.address;j
temp sPtats.num access :0.0;
temp-stats.sum access U0.0;

temp stt Min access l .0e4

temp- stats.max access 1 .0e-9;j
temp--stats.sum messales : 0.0
temp stats.smnmess-len 0 .0e;
temp_ stats.max mess-len l .0e ;

tempstats.smxmess-delan .
temp_sptats.smnmess delay 0 .04 ;

tepstats.max mess delay :U .Oe-9;
new(ptr)
if j - 1

then
begin
front stats :ptr

current-stats :- ptr;
end

else
current stats'^.next :=ptr

ptr^.data :temp_sptats
if j -num stations

then ptr^.next :-front stats
else ptr^.next :-nil

current-station :- current-station^ .next-station
if j > 1 then current-stats Uptr

end
end ; *** it stats**)

132



* . • r r r- i v

• -DATE: 13 Sep 1985-* --

• VERSION: 1.1 .

• NAME: calc__token pr opde lays* ..
• MODULE NUMBER: 1.5 * .'.
• DESCRIPTION: calculates token-passing propagation times *
• PASSED VARIABLES: none*• RETURNS: nothing

GLOBAL VARIABLES USED: poatr sedlhtfront station num stations* "-

• ~~~calc_pass .prop__t ime *'. -
• GLOBAL VARIABLES CHANGED: current station sig._prop*".--.

• ~~sigjdelay *- -"
• FILES READ: none *,.

FILES WRITTEN: none* ..

• MODULES CALLED: none •,..

.1

• CALLING MODULES : sel bus setup *,.."

• AUTHOR: Jim Spieth *"S HISTORY: 1.1 13 Sep 85 added calc_pass_prop*time test

S1.0 31 Aug 85 orgnal*

procedure calc tokenpropdelays *

var distance : real
p$ q : integers te a gp gi is

begin
sg_prop p fpropactor * speedsllght

sigjdelay :=1.0 /sig_prop; .
current -station :-front-stationif calcacass rrop__Ime

then"-".
for p :1 to num stations do ::'

begin '-'
distance :- abs(current-station^.attrib.distance- .."current staton^.next station^.attrnb.distancet;nigrp

currentstaton^.attrb.pass propdTme :- distance *sgdelay
wrILtelncurrent staton^.attrb.address, ,.

current staton^.attrlb.passprop_time e ;

currentstation :- current station.next station ;--.

end
else
for q :a 1 to rum statons do

begin

writeln(current station^.attrib.address,'current statond attrib.passprop_htime
current station current staton^.next station

hend
e fornpd,- 1.to -u"tain do

begin

distnce ab~curentstaton~.attib~istace7



I. .

V.I

* DATE: 31 Aug 1985 *

* VERSION: 1.0 *

* NAME: sel bus setup *

* MODULE NUMBER-- 1.0 ,

DESCRIPTION: executive for modules to setup bus conf1g. *

* PASSED VARIABLES: none *

* RETURNS: nothing *
* GLOBAL VARIABLES USED: none *

GLOBAL VARIABLES CHANGED: none *

* FILES READ: none *

* FILES WRITTEN: none *
* MODULES CALLED: busdata input *

* station data input *
* calc firstarr and len *

* Init stats *

* clactokenpropdelays *

* CALLING MODULES: bussim (main) *

* AUTHOR: Jim Spieth *

* HISTORY: *
* *"-

procedure selbus_setup

begin
writeln('select bus configuration setup module')
busdatainput
station_datainput
calc firstarr and len ;
init-stats
calc tokenpropdelays

end;

F 134



"1 " * DATE: 24 Sep 1985 ,
• VERSION: 1.4 *

• * TITLE: simulate *
• FILENAME: simulate.pas *

* * COORDINATOR: Jim Spieth *
*' * PROJECT: Avionics Bus Simulation Model *

• OPERATING SYSTEM: VAX/VMS, Version 4.2 on VAX-11/782 *
• * LANGUAGE: Pascal *
• USE: %include file for program bussim *
-•* CONTENTS: simulate *
• calc_next_arr_and_len *
•*_- dist_algor *

FUNCTION: performs the simulation of the bus *

'S,

. °*

AA

;.

135

. . .- . .

2. A±2~2. .2~ a~a~a a ~ ~ . .; anl ~ii * biil ~iJ A gi a'~i~s aai ".. %



* DATE: 21 Aug 1985 *
* VERSION: 1.0 *

NAME: calc next arr and len n

* MODULE NUMBER: 2.1.4 -
* DESCRIPTION: calculates arrival time and length of next *
* message for current station *
* PASSED VARIABLES: none *
* RETURNS: none

GLOBAL VARIABLES USED: current station *
GLOBAL VARIABLES CHANGED: none

* FILES READ: none
* FILES WRITTEN: none *
* MODULES CALLED: calc arr and len ,.
* CALLING MODULES: dist algor •

AUTHOR: Jim Spieth *
* HISTORY: *
* * - -

procedure calc nextarrandlen

var
arrivaltime,
message__len : real;
temp_mess : messagetype

begin
calcarrandlen(

current station ̂ .attrib.messarr-type,
currentstation .attrib.messarrrate,
current_station ̂ .attrib.messlen type,
current station^.attrib.mess len mean,

arrival_time, messagelen)
temp-mess.source add : current station^.attrib.address
temp_mess.length := message-len
temp_mess.arr_time := arrivaltime
inrearqueue(current station ^.attrib.front_mess queue,

current station^.attrib.rear mess queue, tempmess)
end

136
. - . . * .



%

DATE: 24 Sep 1985

VERSION: 1.3 *

* NAME: dist algor
* MODULE NUMBER: 2.1 *
* DESCRIPTION: simulates distributed token-passing algorithm *
* PASSED VARIABLES: none *
* RETURNS: none *'.j
* GLOBAL VARIABLES USED: sim_clock passcycle bit rate *
* current station current stats *
* token_bits stat delay num stations* ....
* token_hold _limit tokenhold_type *
* GLOBAL VARIABLES CHANGED: current station current stats *
* FILES READ: none *
* FILES WRITTEN: none *

* MODULES CALLED: calc next arr and len*
* ~out frontque*

* updateaccessstats *
4* update.message_stats *
Sd , updatedelay_stats *

.* updatethruput_stats *
" * CALLING MODULES: simulate *

* AUTHOR: Jim Spieth *
* " * HISTORY: *
* * 1.3 24 Sep 85 added tokenholdtype *

* 1,2 31 Aug 85 added update delay stats call *
* 1.1 29 Aug 85 added update access stats call *

" * 1.0 21 Aug 85 original *
.* * * .

. procedure dist__algor ;

var send, station count,
pass-cycle : integer

Idata-len, mess-tx, mess-len, cycletime, sumdatabits,
sumover_bits, hold_limit : real

begin
writeln('dist algor module')
send :- ; (** send-l=yes, send-O-no **)

I station-count := 1;
passcycle := 1
cycletime := sim clock
sumdatabits : 0.0 ;
sum over bits :- 0.0 ;
current station :- front station_ _ K
current stats :- front stats
hold-limit : token hold limit

137

; : . .,'.:,=. .'.,...' _, ........ * ..... , ..- ...... . ..... . . . . . , . , . .- . , . . . .. '.



4..

while (sim_clock < sim_stop__time) do
begin
updateaccess_stats(currentstation-.attrib.last access, pass cycle) ;
if (current-station ^.attrib.front_mess _queue <> nil) -.
then P'"

begin
while (send = 1) do

begin
if current station^.attrib.messarr type <> contin then
if currentstation ^.attrib.frontmess_queue^.info.arrtime

> sim clock then send := 0;
if send - 1 then

begin
data len :

current station ^.attrib.frontmess_queue^.info.length ;
mess len :- data len + overheadbits
mess-tx :- mess len / bit rate
case tokenhold type of

time : if mess tx > hold limit
then send := 0

num if hold limit 0.0
then-send := 0

end ; (* of case *)
if send = 1 then

begin
updatemessage stats(mess len)
simclock :- sim-clock + mess tx
if current station^.attrib.mess_arrtype <> contin then

update delaystats(
currentstation^.attrib.frontmess queue .info.arrtime)

calc next-arr and len ;
out_-frontqueue(current station^.attrib.front-mess_queue,

currentstation^.attrib.rearmessqueue)
sum data bits := sum data bits + data len
sum over bits : sum over bits + overhead bits ; "
case tokenholdtype of

time : hold limit : hold limit - mess tx
num : hold limit : hold limit - 1.0

end; (*of case
end

end
end ; (* send while *)

end; (* nil if *)
sim clock : sim clock + (token bits / bit rate)
sum-over bits :- sumoverbits + token bits ;
sim--clock : sim_clock + currentstation^.attrib.passprop__time
sim-clock : sim clock + stat delay
current station : current station^.next station
current stats : current stats^.next
station count station count + 1;
send := 1;

. "' holdlimit : tokenholdlimit

138
• o



if station count >num stations then
begin
pass cycle :- pass cycle + I
stationcount :- 1I
cycle time :=sim clock - cycle-time;
update thruput stats(cycle time, sum data bits, sum over bits);
cycle-time :=sim clock;
end;

end (**while**)

end ; dist-algor Ilk*

139



7*27T - - % - 77. -.

* DATE: 24 Sep 1985 *
VERSION: 2.1 * ,

: * NAME: cent algor *
* MODULE NUMBER: 2.2 *
* DESCRIPTION: simulates centralized token-passing algorithm *
* PASSED VARIABLES: none *
* RETURNS: none *
* GLOBAL VARIABLES USED: sim clock passcycle bitrate *

* current station current stats *

* token bits stat delay numstations*
-.* token_holdlimit tokenhold_type *
* GLOBAL VARIABLES CHANGED: currentstation current stats *
* FILES READ: none *
* FILES WRITTEN: none *
' * MODULES CALLED: calc nextarrandlen * -'

* out frontqueue
* updateaccess-_stats *
C * updatemessage_Stats ,

* updatedelay__stats *
* update thruput_stats *
* CALLING MODULES: simulate *

* + * AUTHOR: Jim Spieth *
' * HISTORY: *

* 2.1 24 Sep 85 added tokenholdtype *
* 2.0 17 Sep 85 simplified (deleted next message lines) *
* 1.0 31 Aug 85 original *

procedure cent__algor ; L
var send, send token, pass,

station-count, passcycle : integer

datalen, mess.tx, messlen,
cycle time, sum data bits,
sum over bits, hold-limit : real ;

begin
writeln('centralized algorithm procedure called')
send := ; (** sendfl=yes, send=O=no **)
send-token : 0;
pass := 0
stationcount :- 1
passcycle : ;
cycle time : sim clock
sum_databits := 0.0 ;
sum over bits := 0.0 ;
current station := frontstation ;

- . current stats :- front stats ;
hold limit : token hold limit

140

- . - -- - . - '

t %." ,



while (simclock < sim_stop__time) do," begin
updateaccess_ stats(currentstation^ .attrib.lastaccess, pass-cycle )
if current station ^.attrib.frontmess queue = nil

then send token :- 1
else
while (send = 1) do

begin
if currentstation^.attrib.mess arr type <> contin
then if currentstation^.attrib.front messqueue .info.arr_time .

> sim clock
then
begin
send := 0
if pass > 0

then send token : 0
else send token 1

end
if send 1

then
begin
data len :=

currentstation^.attrib.front_mess queue .info.length

messlen : data len + overhead_bits ;
mess tx mess len / bit rate

, . case tokenhold type of
time: if messtx > holdlimit

then
begin
send :- 0 ;
if pass > 0
then send token :- 0
else send-token :1

end
num: if hold limit 0.0

then ,"
begin
send :- 0
if pass > 0
then send token : 0
else sendtoken := 1

end
end ; (* of case

141

- *. . -. .



*~~~L - - a . . - - --- - . -, V -- :.K IF 7 7- W -

U.

" -''-if send 1 then
if begin (* send message *)

update message-stats(mess-len)
sim clock :- simclock + mess-tx
if current station^.attrib.mess_arrtype <> contin then
update delaystats(

currentstation^ .attrib.frontmess_queuê .info.arrtime) ;
calc next arr and len
outront--queue (current _station^.attrib.front_mess_queue,

current station^.attrib.rear mess_queue) ;
sum data bits : sum data bits + data len
sumover_bits : sumover_bits + overheadbits
pass :- pass + 1
case tokenholdtype of

time : hold_limit :- hold_limit - messtx -
num : hold limit :f holdlimit - 1.0

end ; (* of case *)
end

end
end ; (* send while *)

if send-token = 1
then
begin
sim-clock :- sim clock + (token-bits / bit-rate)
sum over_bits := sum over_bits + tokenbits
end

sim_clock := sim_clock + currentstation^.attrIb.pass_prop time ;
sim clock := sim clock + statdelay
currentstation : currentstation^.nextstation
currentstats : currentstats^.next
stationcount : stationcount + 1
send 1
sendtoken := 0
pass : 0
holdlimit := tokenholdlimit
if station count > num stations

then
begin
passcycle := pass cycle + 1 ;_
station count := 1
cycle time :- sim clock - cycletime
updatethruputstats(cycletime, sumdata-bits, sumover_bits)
cycle time := sim clock
end

end ; (**** while ****)
end ; (**** cent algor ****)

°-V-4

142

.......... a.\'a-..

~~~~~~~~~~~~~~~~~~~~~~~~~~..'°" .. . ... °-: ., .. . ° - * -o .- .- o-- ... ,-' . .... •. . .- , , -,- . °o.°° .° ° • . - ,


9,9. 47.

* DATE: 24 Aug 1985*
* VERSION: 1.0*

* NAME: simulate
* MODULE NUMBER: 2.0
* DESCRIPTION: executive for bus simulation
* PASSED VARIABLES: none*
* RETURNS: none*
* GLOBAL VARIABLES USED: bus control*
* GLOBAL VARIABLES CHANGED: none
* FILES READ: none*
* FILES WRITTEN: none*
* MODULES CALLED: dist algor*

* cent~algor
* CALLING MODULES: bussim (main)*

* AUTHOR: Jim Spieth*
* HISTORY:*

procedure simulate;

begin
vriteln('simulation control module entered')

~ case bus control of
distrib : dist-algor
central : cent algor
end (~of case

end;

143

-7I

V. V°

Appendix C. Test Case Command Files

This appendix contains the command files used to execute the seven

test case simulations in Chapter IV. The first line of each file is a

comment indicating which test case and condition the file was used for.

For most of the test cases, ten simulations were made with different

message arrival rates to generate data which was presented as delay-

throughput curves. However, only one command file representing one

message arrival rate set is included in this appendix for each condition

of each test case.

1441

. :.:.....

" ."- ! First Test Case Equal Message Arrival Rates
$ run disk$user:[spieth.bus]bussim
707
30 1 50.0e6
0.666666666 60.0 0.5e-6
1 2 0 83. 3 2e-6
0 1 0 1500.0
0 1 0 64.0
22.0 70.0 16.0
0.0 256.0 4. T
0.6

1 2 2.0 .''-
2 3 2.5 -"-
3 4 3.0
4 5 3.5

5 6 4.0
6 7 4.5
7 8 5.0
8 9 6.0
9 10 7.0
10 11 8.0
11 12 9.0
12 13 10.0
13 14 13.0
14 15 14.0
15 16 15.0
16 17 16.0
17 18 17.0
18 19 18.0
19 20 28.0 '."
20 21 29.0 ,'
21 22 30.0
22 23 31.0
23 24 32.0
24 25 33.0
25 26 55.0
26 27 56.0
27 28 57.0 1.2
28 29 58.0
29 30 59.0
30 1 60.0

41..

145

2.--, -Z

I First Test Case Unequal Message Arrival Rates
$ run disk$user:[spieth.bus]bussim

480
30 1 50.0e6

" 0.666666666 60.0 O.5e-6
1 2 0 83.32e-6
0 1 1 400.0
0 1 0 64.0
22.0 70.0 16.0
0.0 256.0
0.6

1
1 2 2.0
10.0
2 3 2.5 -750.0 ..'

3 4 3.0
500.0
4 5 3.5
500.0
5 6 4.0
50.0 .--.

6 7 4.5
10.0
7 8 5.0
10.0
8 9 6.0
50.0
9 10 7.0
500.0
10 11 8.0
500.0
11 12 9.0
50.0
12 13 10.0
10.0
13 14 13.0
10.0
14 15 14.0
50.0
15 16 15.0
500.0
16 17 16.0
500.0
17 18 17.0
50.0
18 19 18.0
10.0
19 20 28.0
10.0 -
20 21 29.0

50.0

146

21 22 30.0
:~ 500.0

22 23 31.0
500.0
23 24 32.0
50.0
24 25 33.0
10.0
25 26 55.0

10. 27 56.0

50.0
*27 28 57.0

500.0
28 29 58.0
500.0
29 30 59.0
50.0
30 1 60.0

* 10.0

147

W-. *.

* : Secondi Test Case MeanL Message Length 128o Data Words a.

* $ run disk$user:(spieth.buslbussim
480
30 1 50.0e6
0.666666666 60.0 0.5e-6
1 2 0 83.32e-6
0 1 1 400.0
0 1 0 128.0
22.0 70.0 16.0
0.0 256.0
0.6

1 2 2.0
10.0
2 3 2.5
50.0
3 4 3.0
500.0
4 5 3.5
500.0
5 6 4.0
50.0
6 7 4.5
10.0
7 8 5.0
10.0
8 9 6.0
50.0
9 10 7.0
500.0
10 11 8.0
500.0
11 12 9.0
50.0
12 13 10.0
10.0
13 14 13.0
10.0
14 15 14.0F
50.0
15 16 15.0
500.0
16 17 16.0
500.0

-,17 18 17.0
50.0
18 19 18.0 *

10.0
19 20 28.0
10.0

A 20 21 29.0r
50.0

148

21 22 30.0

500. 23 31.0

500.0
23 24 32.0 !.-

50.0
24 25 33.0
10.0
25 26 55.0
10.0
26 27 56.0
50.0
27 28 57.0
500.0
28 29 58.0
500.0
29 30 59.0
50.0
30 1 60.0
10.0

149

N.1 1 ,ii I

I Second Test Case Mean Message Length 32 Data Words
$ run disk$user: lspieth.busl bussim
480
30 1 50.0e6
0.666666666 60.0 0.5e-6
1 2 0 83.32e-6
0 1 1 400.0
0 1 0 32.0
22.0 70.0 16.0
0.0 256.0
0.6

1 2 2.0
10.0
2 3 2.5
50.0
3 4 3.0
500.0
4 5 3.5
500.0
5 6 4.0
50.0
6 7 4.5
10.0
7 8 5.0

A- 10.0

~e8 9 6.0
50.0

910 7.0
100.08.
500.08.
5001.9.
50.0 9.
1203.0.
10.0 0.
1304.3.
10.0 3.

P14 15 14.0
50.0
15 16 15.0
500.0
16 17 16.0
500.0

317 18 17.0
50.0
18 19 18.0
10.0 ~.,
19 20 28.0
10.0 ..

20 21 29.0
50.0

150

21 22 30.0
500.0
22 23 31.0
500.0
23 24 32.0
50.0
24 25 33.0
10.0
25 26 55.0

10. 27 56.0

27 28 57.0

500.0

30 10 60.0
10.0

10.0'

151

xrr nPrj W V ,rw r .uaC4~5:~-. .--

. .- ! Third Test Case Worst Case Token-Passing Sequence
$ run disk$user:[spieth.bus]bussim
480
30 1 50.0e6
0.666666666 60.0 0.5e-6
1 2 0 83.32e-6
0 1 1 400.0
0 1 0 64.0

22.0 70.0 16.0
0.0 256.0
0.6

1 30 2.0
10.0
30 2 60.0
10.0
2 29 2.5
50.0
29 3 59.0

*' 50.0
3 28 3.0
500.0
28 4 58.0
500.0
4 27 3.5
500.0
27 5 57.0 L
500.0
5 26 4.0
50.0
26 6 56.0
50.0
6 25 4.5
10.0
25 7 55.0
10.0
7 24 5.0
10.0
24 8 33.0
10.0
8 23 6.0
50.0
23 9 32.0
50.0
9 22 7.0
500.0
22 10 31.0
500.0
10 21 8.0~~~500.0 .,
21 11 30.0

500.0

152

.

11 20 9.0

500 12 29.0
50.0
12 19 10.0

19 13 28.0

10.0
13 18 13.0
10.0
18 14 18.0
10.0
14 17 14.0
50.0
17 15 17.0
50.0
15 16 15.0
500.0
16 1 16.0
500.0

153

M, c "-"- 'r•-" x"r". " ."-... - .~ -

,; .~.. I Fourth Test Case Bit Rate 25 megabits/second
$ run disk$user:[spieth.busjbussim
480
30 1 25.0e6
0.666666666 60.0 0.5e-6
1 2 0 166.64e-6
0 1 1 400.0 ,"-
0 1 0 64.0
22.0 70.0 16.0
0.0 256.0
0.6

1 2 2.0
10.0
2 3 2.5
50.0
3 4 3.0
500.0
4 5 3.5
500.0
5 6 4.0
50.0
6 7 4.5
10.0
7 8 5.0
10.0
8 9 6.050.0o
9 10 7.0
500.0
10 11 8.0
50 12 9.0

50.0
12 13 10.0
10.0
13 14 13.0
10.0
14 15 14.0'L
50.0
15 16 15.0
500.0
16 17 16.0
500.0
17 18 17.0
50.0
18 19 18.0
10.0
19 20 28.0
10.0
20 21 29.0
50.0

154
p..

pjL .w % -. p -. p L ".- ILi W- -- X-

21 22 30.0
~ 500.0

22 23 31.0
500.0
23 24 32.0
50.0. -

*24 25 33.0
10.0 .

25 26 55.0
10.0 L
26 27 56.0
50.0
27 28 57.0
500.0
28 29 58.0
500.0
29 30 59.0
50.0
30 1 60.0
10.0

155

*~~~~7 -A- L-'.. * 7 *~.~-. -

Fourth Test Case Bit Rate 40 megabits/second
$ run disk$user:[spieth.bus]bussim
480
30 1 40.Oe6

*0.666666666 60.0 0.5e-6
1 2 0 104.15e-6
0 1 1 400.0

*0 1 0 64.0
22.0 70.0 16.0
0.0 256.0
0.6

1 2 2.0
* 10.0

2 3 2.5
50.0
3 4 3.0
500.0 r

4 5 3.5
500.0
5 6 4.0
50.0
6 7 4.5
10.0
7 8 5.0
10.0
8 9 6.0
50.0
9 10 7.0
500.0
10 11 8.0
500.0
11 12 9.0
50.0
12 13 10.0
10.0
13 14 13.0
10.0
14 15 14.0
50.0
15 16 15.0
500.0
16 17 16.0
500.0
17 18 17.0
50.0
18 19 18.0
10.0
19 20 28.0
10.0
20 21 29.0
50.0

156

21 22 30.0
500.0 !.... ,,

" 22 23 31.0
500.0
23 24 32.0
50.0
24 25 33.0
10.0
25 26 55.0
10.0
26 27 56.0
50.0
27 28 57.0
500.0
28 29 58.0

* 500.0
29 30 59.0
50.0
30 1 60.0
10.0

157

*. * .*.*-....* . . **-. .2~.~.. * * * . i.4=

Fifth Test Case Maximum Message Length -1024 data words

$ run disk$user:[spieth.bus]bussim
480
30 1 50.0e6
0.666666666 60.0 0.5e-6
1 2 0 329.08e-6
0 1 1 400.0
0 1 0 64.0
22.0 70.0 16.0
0.0 1024.0
0.7

1 2 2.0
10.0
2 3 2.5
50.0k
3 4 3.0
500.0
4 5 3.5
500.0
5 6 4.0
50.0
6 7 4.5
10.0
7 8 5.0
10.06.

50.0
9 10 7.0
500.0
10 11 8.0
500.0
11 12 9.0
50.0
12 13 10.0
10.0
13 14 13.0
10.0
14 15 14.0
50.0
15 16 15.0
500.0
16 17 16.0
500.0
17 18 17.0p
50.0
18 19 18.0
10.0
19 20 28.0
10.0
20 21 29.0
50.0

158

21 22 30.0
500.0
22 23 31.0
500.0
23 24 32.0
50.0
24 25 33.0
10.0
25 26 55.0
10.0
26 27 56.0
50.0
27 28 57.0
500.0
28 29 58.0
500.0
29 30 59.0
50.0
30 1 60.0
10.0

159

..' ..

Fifth Test Case Maximum Message Length 4096 data words
$ run disk$user:[spieth.bus]bussim

480
30 1 50.0e6
0.666666666 60.0 0.5e-6
1 2 0 1.312120e-3
0 1 1 400.0

. 0 1 0 64.0
22.0 70.0 16.0
0.0 4096.0
0.8

1 2 2.0
10.0
2 3 2.5
50.0
3 4 3.0
500.0
4 5 3.5
500.0
5 6 4.0
50.0
6 7 4.5
10.0
7 8 5.0
10.0 .' .
8 9 6.0
50.0
9 10 7.0
500.0
10 11 8.0
500.0
11 12 9.0
50.0
12 13 10.0
10.0
13 14 13.0 " -

10.0
14 15 14.0
50.0
15 16 15.0
500.0
16 17 16.0
500.0
17 18 17.0
50.0
18 19 18.0
10.0
19 20 28.0
10.0

- 20 21 29.0
50.0

160

'21 22 30.0
Y.:' 500.0

22 23 31.0
500.0 i

23 24 32.0
* 50.0

24 25 33.0
10.0
25 26 55.0
10.0
26 27 56.0
50.0
27 28 57.0
500.0
28 29 58.0
500.0
29 30 59.0
50.0
30 1 60.0
10.0

161

Sixth Test Case Deterministic Message Arrivals
$ run disk$user:[spieth.busjbussim
480
30 1 50.0e6
0.666666666 60.0 0.5e-6
1 2 0 83.32e-6
0 0 1 400.0
0 1 0 64.0
22.0 70.0 16.0
0.0 256.0 1
0.6

1 2 2.0
10.0
2 3 2.5
50.0
3 4 3.0
500.0
4 5 3.5
500.0
5 6 4.0
50.0
6 7 4.5

- - 10.0

7 8 5.0
10.0
8 9 6.0
50.0
9 10 7.0
500.0
10 11 8.0
500.0
11 12 9.0
50.0
12 13 10.0
10.0
13 14 13.0
10.0
14 15 14.0
50.0
15 16 15.0
500.0
16 17 16.0
500.0
17 18 17.0
50.0
18 19 18.0
10.0
19 20 28.0
10.0
20 21 29.0
50.0

162

-'W~~~ I -_vV V

500.0
24 25 33.0
100.0
25 26 55.0
10.0
26 27 56.0
50.0
27 28 57.0
50.0
28 29 58.0 1
50.0
29 30 59.0
500.0

30 30 60.0

10.0

163

I "- .

|w- -UL V

I Seventh Test Case Distributed Control Protocol
$ run disk$user:[spieth.bus]bussim
480
30 1 50.0e6
0.666666666 60.0 0.5e-6
0 1 0 1.31136e-3
0 1 1 400.0 .

0 1 0 128.0
112.0 112.0 8.0
0.0 8182.0

1 2 2.0
10.0
2 3 2.5
50.0
3 4 3.0
500.0
4 5 3.5
500.0
5 6 4.0
50.0
6 7 4.5
10.0
7 8 5.0
10.0_ 8 9 6.0

50.0
9 10 7.0
500.0
10 11 8.0
500.0 ','11 12 9.0

50.0
12 13 10.0
10.0" 13 14 13.0

10.0
50.0

15 16 15.0
16 17 16.0

500.0
17 18 17.0

50.0
18 19 18.0
10.0
19 20 28.0
10.0

vi 20 21 29.0""" " 50.0

14 '.- 164-'

21 22 30.0
500.0
22 23 31.0
500.0
23 24 32.0
50.0
24 25 33.0
10.0
25 26 55.0
10.0
26 27 56.0
50.0
27 28 57.0
500.0
28 29 58.0
500.0 .*rv
29 30 59.0
50.0
30 1 60.0
10.0

165

* *-'.. .. :-..

r-7 7j Kr 'r-rr- 'a '% "w~.*- - %7 -in

i% .- ,-. %.-

Bibliography

AI
Alber, Harold J., Group Leader, Multiplex Standards Group. Personal

interview. US Air Force, ASD/ENASF, Wright-Patterson AFB, Ohio, 29 ,. "
March 1985.

Alber, Harold J. and Wayne A. Thomas. "A Dual Channel High Speed
Fiber Optics Multiplex Data Bus System," Proceedings of The ..-
IEEE 1985 National Aerospace and Electronics Conference. 130-135.
IEEE, New York, 1985.

Boeing Military Airplane Company. MIL-STD-1553 Multiplex Applications
Handbook. Final Technical Report, Contract F33165-78-C-0112. Boeing
Military Airplane Company, Seattle, Washington, 1980.

Bux, W. "Local-Area Subnetworks: A Performance Comparison," Proceedings
of the IFIP Working Group 6.4 International Workshop on Local
Networks (Local Networks For Computer Communications). 157-180.
North-Holland Publishing Company, Amsterdam, Netherlands, 1981.

Cherukuri, Rao et al. "Evaluation of Token Passing Schemes in Local
Area Networks," Proceedings of the Computer Networking Symposium.
57-68. IEEE Computer Society Press, Silver Spring, Maryland, 1982.

Dale, Nell and David Orshalick. Introduction to PASCAL and Structured
Design. Lexington, Massachusetts: D. C. Heath and Compan". 1983.

Fortier, Paul J. and Richard G. Leary. "A General Simulation Model For
The Evaluation Of Distributed Processing Systems," Proceedings of
the 14th Annual Simulation Symposium. 215-226. IEEE Computer
Society Press, Silver Spring, Maryland, 1981.

Gifford, Charles A. "A Military Standard For Multiplex Data Bus,"
Proceedings of The IEEE 1974 National Aerospace and Electronics
Conference. 85-88. IEEE, New York, 1974.

Institute Of Electrical and Electronics Engineers (IEEE) Draft Standard
802.4, Token-Passing Bus Access Method and Physical Layer
Specification. IEEE, New York, 1982.

Jackman, John J. and D. J. Medeiros. "Modeling And Analysis Of Ethernet

Networks," Proceedings of the 1984 Winter Simulation Conference.
595-600. IEEE, New York, 1984.

Klass, Philip J. "Collins Developing High-Speed Data Bus for Military
Aircraft," Aviation Week &Space Technology, 123: 165-169+
(October 21, 1985).

Kurose, James F. et al. "Multiple-Access Protocols and Time-Constrained
Communication," Computing Surveys, 16: 43-70 (March 1984).

166

. '..-.,. .'.. .-.... ." : -" *-- - . . .**,* * % . .-. .-.-.- ..-... .

-- - a . - --- - - -

Liu, Ming T. et al. "Performance Evaluation of Channel Access Protocols

for Local Computer Networks," Proceedings of the 25th IEEE Computer
.Society International Conference. 417-426. IEEE Computer Society
Press, Silver Spring, Maryland, 1982.

Ludvigson, M. T. and K. L. Milton. "High Speed Bus For Pave Pillar
Applications," Proceedings of The IEEE 1985 National Aerospace and
Electronics Conference. 122-129. IEEE, New York, 1985.

Miller, C. Kenneth and David M. Thompson. "Making a case for token
passing in local networks," Data Communications, 11: 79-88+
(March 1982).

Mittra, Sitansu S. "Discrete system simulation concepts," Simulation,
43: 142-144 (September 1984).

Myers, Ware. "Toward a Local Network Standard," IEEE Micro Magazine,
2: 28-45 (August 1982).

Rahimi, Said K. and George D. Jelatis. "LAN Protocol Validation and
Evaluation," IEEE Journal On Selected Areas In Communications, SAC-
1: 790-802 (November 1983).

Schmidt, J. W. "Introduction To Simulation," Proceedings of the 1984 .'"
Winter Simulation Conference. 65-73. IEEE, New York, 1984.

Schruben, Lee. "Modeling Systems Using Discrete Event Simulation,"
Proceedings of the 1983 Winter Simulation Conference. 101-107.
IEEE, New York, 1983.

Shannon, Robert E. "Simulation: An Overview," Proceedings of the 1983
Winter Simulation Conference. 19-22. IEEE, New York, 1983.

Shannon, Robert E. Systems Simulation: The Art and Science. Englewood
Cliffs, New Jersey: Prentice-Hall, Inc., 1975.

Society of Automotive Engineers. Proposed Linear Token Passing Bus
Media Access Method. Draft SAE Standard. SAE, St. Paul, Minnesota,
February, 1985.

Stallings, William. "Local Networks," Computing Surveys, 16: 3-41
(March 1984).

Stallings, William. "Local Network Performance," IEEE Communications
Magazine, 22: 27-36 (February 1984).

Stuck, Bart W. "Calculating the Maximum Mean Data Rate in Local Area
Networks," IEEE Computer Magazine, 16: 72-76 (May 1983).

Stuck, Bart W. "Which local net bus access is most sensitive to traffic
congestion?," Data Communications, 12: 107-120+ (January 1983).

167
. 4

Tanenbaum, Andrew S. Computer Networks. Englewood Cliff s, New Jersey:

Ulu, . E "omarionOfToken _odn ieSrtge For A Static
Token Passing Bus," Proceedings of the Computer Networkingj
Symposium. 37-44. IEEE Computer Society Press, Silver Spring,

Maryland, 1984.

168

7~° ..7 Irv

VITA

James E. Spieth was born on 11 March 1952 in Cleveland, Ohio. He

graduated from high school in Strongsville, Ohio in 1970 and attended

Ohio Northern University from which he received the degree of Bachelor

of Science in Electrical Engineering in May 1975. After graduation, he

accepted a position with the USAF's Aeronautical Systems Division (ASD)

as an aircraft electrical power system engineer. In 1981, he changed

positions within ASD and moved to the Systems Engineering Avionics

Facility. He remained there as an avionics systems engineer until

entering the School of Engineering, Air Force Institute of Technology, L1..1

in October 1984.

Permanent Address: 1552 Stormy Court
Xenia, Ohio 45385

169

--------------... o..

UNCLASSIFIED I-.,

SECURITY CLASSIFICATIO N OF THIS PAGE

-. REPORT DOCUMENTATION PAGE
SREPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

*UNCLASSIFIED

2a, SECURITY CLASSIFICATION AUTHORITY 3. DISTRI BUTION/AVAI LABILITY OF REPORT

_______________________________ Approved for public release;
* 2b. OECLASSIFICATION/OWNGRAOING SCHEDULE distribution unlimited

A. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCS/ENG/85D-15

Ea6. NAME OF PERFORMING ORGANIZATION Sb. OFFICE SYMBOL
7a. NAME OF MONITORING ORGANIZATION -

(IfaPplicabte)

*School of Engineering AFIT/ENG

6 c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

* Air Force Institute of Technology

Wright-Patterson AFB, Ohio 45433-6583

8gB. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

* Aeronautical Systems Division ENASF

* Sc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

ASD/ENASF PROGRAM PROJECT TASK WORK UNIT
ELEMNT N. NO NO.NO.

* Wright-Patterson AFB, Ohio 45433-6503ELMNNONON.

11. TITLE (Include Security Claw (ication)

* ~See Box 19 _____________________

12. PERSONAL AUTHOR(S)
James E. Spieth, B.S.E.E.

0_T 3TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo.. Day) 15. PAGEi COUNT

* MS Thesis FROM _____TO ____ 1985 December17
16. SUPPLEMENTARY NOTATION

* 17. COSATI CODES 1B. SUBJECT TERMS (Continue on reverse if necesuary and identify by block number)

FIELD GROUP SUB. GR. Avionics, Computer Communications, Digital Simulation,
01 03 Local Area Networks

13. ABSTRACT (Contlinue on reuverse if necessary and identify by block number)

Title: SIMULATION MODEL OF A HIGH-SPEED TOKEN-PASSING

BUS FOR AVIONICS APPLICATIONS

Thesis Chairman: Walter D. Seward, Major, USAF
Assistant Professor of Electrical and Computer Engineering

If~e 11 LWf AW AM ! 1111.;I

EWOLAVER Ib/.)RAt01W
IUtos laiiht 4d Isegqow On*e

NWV&4U.W AMt ONft

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATIONr

N ~CLASSIFIED/UNLIMITC- 1 SAME AS RPT. 0OTIC USERS 0UNCLASSIFIEDI22.. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c. OFFICE SYMBOL

Walter D. Seward, Major, USAF5125-76AI/N

DD FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE. UNCLASIFIED
SECURITY CLASSIFICATION OF THIS PAGE' 7

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE ,-

There are many factors of bus token-passing protocols that
influence the overall performance of the protocol. Extensive analysis
is needed to design a protocol with performance that can meet the
requirements for a next-generation aviation electronics (avionics) data
bus. The purpose of this thesis was to develop and test a token-passing
bus simulation model that could be used to conduct this analysis.

This thesis developed and validated a model for simulating bus
token-passing protocols for avionics applications. Two algorithms were
designed that reflected the timing and operation of a distributed
control token-passing protocol and a centralized control token-passing-,
protocol. The algorithms were incorporated into an overall simulation
model program which included simulation control, data collection, and
data analysis functions. The simulation model program was written in
the Pascal computer programming language.

The simulation model program allows various avionics bus
configurations to be defined and tested. A series of tests were
conducted using the simulation model program to validate its operation
and modeling capabilities. The validation tests were successful.
Initial performance tests were conducted for a centralized control
token-passing protocol using a bus configuration representative of a
fighter-type aircraft bus network. The performance of the two types of
protocols was also compared.

,. 4*"",'

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE
...

'

4

-f

.4

1~

FILMED

1'

*~1
I. * -

(.

9.
DII C

It

* - . *% . .' *.*~ ? ~

